Return to search

Investigation numérique de l'instabilité Raman dans les lasers à fibre optique dopée à l'ytterbium en régime continu de haute puissance

Les lasers à fibre optique dopée à l’ytterbium en régime continu de haute puissance ontune part de marché grandissante pour des applications d’usinage de métaux. Malgré qu’il s’agisse d’une technologie relativement répandue, un important problème subsiste dans laplupart de ces lasers. À haute puissance, la diffusion Raman stimulée transfère une partie de la puissance de la longueur d’onde principale d’émission des lasers autour de 1070 nm à la première bande de Stokes Raman autour de 1120 nm, ce qu’on appelle l’instabilité Raman. Cette puissance transférée est inutilisable et peut même être dangereuse pour le système laser et ses utilisateurs. Malgré les travaux théoriques et expérimentaux effectués sur ces lasers, très peu d’explications ont été fournies sur les liens entre les paramètres de la fibre optique et des réseaux de Bragg formant la cavité laser et l’instabilité Raman. Le but du projet de maîtrise présenté dans ce mémoire est donc de développer un modèle de simulation numérique de ces lasers, afin de comprendre et d’identifier les mécanismes dominants qui favorisent l’instabilité Raman et de trouver des configurations de montage la minimisant. Ce mémoire présente les deux modèles de simulation développés dans le cadre de ce projet. Le premier traite la propagation du signal laser comme étant unidirectionnelle, alors que le second la traite comme étant bidirectionnelle, ce qui se rapproche plus de la situation expérimentale. Le montage typique simulé est constitué d’une fibre optique à double gaine dopée à l’ytterbium ayant une grande aire modale effective, d’un réseau de Bragg à haute réflectivité et d’un réseau de Bragg à faible réflectivité servant de coupleur de sortie. Les simulations ont permis d’identifier cinq paramètres de la cavité laser ayant un impact important sur l’instabilité Raman. Une faible puissance moyenne du signal, une courte fibre optique de gain, une configuration de pompage en contrapropagation, c’est-à-dire par le côté du coupleur de sortie, ainsi qu’une plus faible réflectivité et une large bande réfléchissante du réseau de Bragg à faible réflectivité permettent de limiter la génération de l’instabilité Raman. L’optimisation de ces paramètres permet d’obtenir une cavité laser ayant extrêmement peu d’instabilité Ra-man. Ce faible niveau d’instabilité Raman semble être causé par une plus faible puissance intracavité, une courte distance de propagation et des modulations rapides de la puissance du signal. Des montages simulés incluant un filtre dans la cavité à la longueur d’onde de Stokes Raman, un réflecteur non linéaire ou une cavité de basse puissance amplifiée ont également montré une réduction significative de l’intensité de l’onde de Stokes Raman. / Continuous high-power ytterbium-doped fiber lasers have an increasing market share formetal processing applications. Despite their widespread use, these lasers still suffer a ma-jor problem. At high power, stimulated Raman scattering shifts the power from the main emission wavelength around 1070 nm to the first Raman Stokes sideband around 1120 nm. This process is called Raman instability. The shifted power becomes useless and can even be dangerous for both the laser system and its users. Previous experimental and theoretical analyses have failed to provide clear explanations on the link between the Raman instability and the parameters of the ytterbium-doped optical fiber and the fiber Bragg gratings forming the laser cavity. The goal of this master’s degree project was to develop a simulation model for continuous high-power ytterbium-doped fiber lasers in order to identify and understand how the parameters of the laser cavity affect the Raman instability and to find cavity configurations that reduce it. This master’s thesis presents the two simulation models developed during this project. The first model considers unidirectionnal propagation of the laser signal while the second one considers bidirectionnal propagation. The latter is thus a more realistic model of such lasers.The typical simulated setup is made of a double-clad ytterbium-doped fiber with a large mode area, a high reflectivity Bragg grating and a low reflectivity Bragg grating that isused as output coupler. The simulations allowed to identify five cavity parameters having an impact on the Raman instability. A low average power, a short gain fiber, a counter-propagation pumping setup as well as a low reflectivity and a large reflective bandwidth for the fiber Bragg grating used as the output coupler help minimizing the Raman instability.The optimisation of these parameters creates a laser cavity with an extremely low power shift to the Raman Stokes sideband. The low Raman instability seems to be caused by a lower intra-cavity power, a shorter propagation distance and fast power modulations in thesignal. Incorporating a filter in the cavity, using a nonlinear reflector as output coupler or using a setup that includes a low-power master oscillator in combination with a high-power amplifier have also been simulated and show a reduction of the Raman instability.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/34745
Date07 May 2019
CreatorsHuneault, Mathieu
ContributorsPiché, Michel, Olivier, Michel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xiv, 108 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0019 seconds