Return to search

Étude théorique de l'interaction molécule - substrat / Theoretical study of the molecule - substrat interaction

Les travaux de cette thèse concernent la compréhension à l'échelle atomique des processus physico chimiques intervenant aux interfaces et dans des phases diluées. Pour commencer, nous avons étudié l'interaction entre la molécule 1,4-diazabicyclo [2.2.2]octane (DABCO) et un atome de gaz rare (He, Ne, Ar, Kr). Nous avons effectué une analyse systématique de ces systèmes, et nous en avons conclu que la méthode MP2 associée à une base diffuse est suffisamment précise pour décrire le système DABCO – Ar. Les surfaces d'énergie potentielle des complexes DABCO – gaz rare ont été calculées, ce qui nous a permis de réattribuer les spectres expérimentaux de ces espèces. Ensuite, nous nous sommes concentré sur les complexes DABCO – Arn (avec n = 2, 3, 4) neutres et ioniques. Nous avons montré que le DABCO interagi avec les atomes d'argon, et subit des déformations dues à l'effet de cette interaction faible sur ses modes de vibration. Par la suite, nous avons étudié les plus bas états électroniques du DABCO – Arn (n = 1, 2, 3). Nos résultats pourront être étendus à l'interprétation qualitative des études spectroscopiques et dynamiques des molécules de DABCO absorbés dans de grands agrégats d'argon. Enfin, nous avons étudié l'interaction entre l'imidazole et une couche d'or en présence de CO2. Nous avons montré que la molécule d'imidazole se fixe à l'agrégat d'or par une liaison covalente entre l'atome d'azote et un atome d'or, ainsi que des interactions faibles de type van der Waals entre les atomes d'hydrogène et la surface d'or. Nous avons déterminé que le site préférentiel pour l'interaction imidazole – or est le site top. Cette interaction permet un transfert de charge de l'imidazole vers la surface d'or, ce qui affecte la capture du CO2 (environ 50% plus faible par rapport à l'interaction Im(seule) – CO2). Mais l'augmentation du nombre de molécules d'imidazole à la surface de la couche d'or pourrait permettre une liaison plus forte entre le CO2 et l'imidazole / This thesis concern the understanding at the atomic level of physicochemical processes occurring at interfaces and dilute phases. First, we studied the interaction between the 1,4- diazabicyclo [2.2.2] octane (DABCO) molecule and a rare gas atom (He, Ne, Ar, Kr). We conducted a systematic analysis of these complexes, and we concluded that the MP2 method with a diffuse basis set is accurate to describe the system DABCO – Ar. The potential energy surfaces of DABCO – rare gas complexes were calculated, which allowed us to reatribuate the experimental spectra of these species. Then, we focused on DABCO – Arn (n = 2, 3, 4) neutral and ionic clusters. We have shown that the DABCO interacted with argon atoms and undergoes deformation due to the effect of the weak interaction on his vibrational modes. Subsequently, we studied the lowest electronic states of DABCO – Arn (n = 1, 2, 3). Our results can be extended to the qualitative interpretation of spectroscopic and dynamic studies of absorbed DABCO in large argon clusters. Finally, we studied the interaction between imidazole and a gold surface with CO2. We have shown that the imidazole molecule binds to the gold surface by a covalent bond between the nitrogen atom and a gold atom, and van der Waals interactions between hydrogen atoms and the gold surface. We determined that the preferred site for the imidazole – gold interaction is the top site. This interaction allows a charge transfer from the imidazole to the gold surface, which affects the capture of CO2 (about 50% lower compared to the interaction Im – CO2). But increase number of imidazole molecules on the gold surface could lead to a stronger bond between CO2 and imidazole

Identiferoai:union.ndltd.org:theses.fr/2013PEST1125
Date10 December 2013
CreatorsMathivon, Kévin
ContributorsParis Est, Hochlaf, Majdi
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds