Por vezes o comportamento vinculado a fadiga é a principal fonte de dúvidas em projetos de engenharia. Aqui, o crescimento de trincas por fadiga é analisado numericamente utilizando uma plataforma de elementos finitos, onde o problema da fratura é modelado de forma discreta através do uso de elementos coesivos de interface. Os casos estudados abordam estruturas que apresentam uma trinca inicial de tamanho conhecido que propaga por um caminho condicionado. Os problemas são restritos ao estado plano de deformações e sujeitos em sua grande maioria a abertura normal entre as superfícies da trinca. O processo de separação das interfaces da trinca é descrito pelo uso de dois modelos de zona coesiva irreversível. Os modelos possuem relações de tensão-separação que não seguem um caminho pré-definido, sendo dependentes da evolução do dano ligado as propriedades da zona coesiva. Inicialmente são mostradas respostas básicas uniaxiais para os elementos coesivos, que provam a existência de curvas S-N e que o acumulo de dano ocorre de forma não linear. Em seguida, analisa-se crescimento de trincas por fadiga em uma viga do tipo double cantilever beam, onde a estrutura observada é formada pela união de duas chapas metálicas através de um adesivo coesivo que direciona o crescimento da trinca Casos com carga de amplitude única são computados, resultando na representatividade da propagação por uma lei de Paris. Além disso, uma análise de fadiga transiente é realizada através de respostas geradas pela aplicação de sequências de carregamentos em blocos, que mostram a dependência entre o formato do bloco e a maneira a qual ocorre a propagação da trinca. Na sequência, observa-se o efeito escala no crescimento de trincas por fadiga em uma placa submetida a tração com comportamento quase-frágil. Obtém-se uma conexão entre a altura da placa e o formato da ruptura. Por fim, o efeito da plastificação sobre a propagação de trincas, incluindo a captura do efeito crack closure, é comprovado em uma estrutura multicamada que emprega uma malha refinada na ponta da trinca. Os resultados mostram que o modelo computacional implementado reproduz comportamentos semelhantes atingidos nos trabalhos de referência para os problemas analisados. / Sometimes fatigue-related behavior is the main source of doubt in engineering projects. Here, the fatigue crack growth is analyzed numerically using a finite element platform, where the fracture problem is discretely modeled through the use of cohesive interface elements. The cases studied deal with structures that present an initial crack of known size that propagates through a conditioned path. The problems are restricted to plane strain and are mostly subject to the normal opening between the surfaces of the crack. The process of separating the interfaces of the crack is described by the use of two models of irreversible cohesive zone. The models have stress-separation relationships that do not follow a predefined path, being dependent on the evolution of the damage linked to the properties of the cohesive zone. Initially basic uniaxial responses are shown for the cohesive elements, which prove the existence of S-N curves and that the accumulation of damage occurs non-linearly. Then, fatigue crack growth is analyzed in a double cantilever beam, where the observed structure is formed by the union of two metal plates through a cohesive adhesive that directs the growth of the crack Cases with single amplitude loading are computed, resulting in the representativeness of propagation by a Paris law. In addition, a transient fatigue analysis is performed through responses generated by the application of block loading sequences, which show the dependence between the block shape and the manner in which crack propagation occurs. In the sequence, the scale effect on the growth of fatigue cracks in a plate subjected to traction with quasi-fragile behavior is observed. A connection is obtained between the height of the plate and the rupture format. Finally, the plastification effect on crack propagation, including crack closure capture, is demonstrated in a multilayer structure that employs a refined mesh at the crack tip. The results show that the computational model implemented reproduces similar behaviors reached in the reference works for the analyzed problems.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/180134 |
Date | January 2018 |
Creators | Moresco, Rafael Luis |
Contributors | Bittencourt, Eduardo |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0044 seconds