Understanding dispersal and gene flow in human-modified landscapes is crucial for effective conservation. Seed dispersal governs colonization, recruitment, and distribution of plant species, whereas both pollen and seed dispersal determine gene flow among populations. This PhD thesis tests the effect of rotational shepherding on seed dispersal and gene flow in fragmented calcareous grasslands. Calcareous grasslands (Gentiano-Koelerietum pyramidatae vegetation) in Central Europe are semi-natural communities traditionally used for rotational grazing that experienced a decline of plant species during the 20th century due to abandonment of shepherding. This PhD profits from a management project started in 1989 in Bavaria, Germany to reconnect previously abandoned calcareous grasslands in three non-overlapping shepherding systems. Two vegetation surveys in 1989 and 2009 revealed colonizations in previously abandoned grasslands reconnected by shepherding. First, I propose a comprehensive approach to identify determinants of community-level patch colonization rates based on 48 habitat specialist plants by testing competing models of pre-dispersal and dispersal effects and accounting for post-dispersal effects. Mean source patch species occupancy in 1989, and structural elements in focal patches related to establishment explained community-level patch colonization rates. Secondly, by adapting the community analysis to all 31 individual species of the same community with sufficient data, I corroborate the role of shepherding to support dispersal for a range of species, even if they lack seed morphological traits related to zoochory. Thirdly, for the habitat specialist Dianthus carthusianorum, I genotyped 1,613 individuals from 64 populations at eleven microsatellites to test the effect of dispersal by sheep on spatial genetic structure at the landscape scale. Genetic distances between grazed patches of the same herding system were related to distance along herding routes, whereas ungrazed patches showed isolation by geographic distance. Lastly, within individual grassland patches, shepherding significantly decreases the degree of relatedness among neighboring individuals (kinship structure) and increases genetic diversity. My thesis contributes towards understanding the effects of zoochory on spatial dynamics in plant populations across scales.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/43939 |
Date | 05 March 2014 |
Creators | Rico Mancebo del Castillo, Yessica |
Contributors | Wagner, Helene H. |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0015 seconds