Return to search

Monitoring the first stages of the regeneration of bone defects

The different strategies of tissue engineering for functional reconstruction of critical-size bone defects require a thorough knowledge of physiological mechanisms of bone repair. Bone healing is a complex process affected by various mediators. Several investigations have studied the gene expression 1 to 3 days after an acute or experimental fracture. Little is known about the humoral and cellular in vivo reaction in the early stages of bone healing. In contrast to other methods of molecule sampling and detection, which usually lead to the inhibition of the biological activity following complex sample preparation and quantification, microdialysis is a real-time monitoring technique which can be applied in living tissues providing a strong link between analytical methodology and biochemistry. In this study, the optimal conditions for microdialysis in a critical size rat long bone defect model for both in vivo and in vitro analyses were developed. Mediators and components of the extracellular matrix occurring in the first 24 to 48 hours of bone healing locally and systemically were monitored via microdialysis and blood sampling, respectively. Furthermore, novel proteins and their modulation were explored during this time frame.

In vitro microdialysis was used to optimize the condition for protein recovery. Addition of bovine serum albumin (BSA) resulted in an enhanced recovery of interleukin (IL)-6. The maximal relative recovery (RR) was from 15.0% without BSA and 23.6% with BSA, while the maximal RR of transforming growth factor (TGF)-β1 was 11.2% with BSA and the concentration of TGF-β1 was below the detection limit of enzyme-linked immunosorbent assay (ELISA) without BSA. Using in vivo microdialysis, total protein concentrations varied between 0.20±0.12 mg/mL and 0.44±0.18 mg/mL. Among the mediators produced in the fracture hematoma within 24 h after the injury, IL-6 was secreted with the highest concentration of 309.1 pg/mL between 12 and 15 h after creation of the critical size bone defect. Meanwhile, the detectable concentrations of TGF-β1 in microdialysates ranged from 3.6 to 44.0 pg/mL and in blood plasma TGF-β1 was constantly producted ranging from 656.3 to 8398.2 pg/mL for 24 h after bone defct.

Moreover, another constant producted growth factor in blood plasma was PDGF-BB and the concentration ranged from 222.1 to 589.4 pg/mL for 8 h after bone defect. Using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), 36 proteins were identified in the microdialysates over 8 h, and 884 proteins were identified on probes which were implanted into the bone defect over 24 h. Among the proteins identified in the hematoma, only a minority originated from the extracellular space. Protein analysis indicated five pathways associated with bone healing that were overrepresented after creating soft tissue and bone defects, of which FGF signaling was specific for bone defects. Furthermore, C-X-C motif ligands CXCL-1, CXCL-2, CXCL-3, CXCL-4, CXCL-5, CXCL-7, rodent bone protein (RoBo-1), insulin-like growth factor (IGF)-I, and chitinase-3-like protein 1 were detected in the fracture hematoma. These proteins are potentially associated to early bone healing. As seen by histological analysis, polymorphonuclear leukocytes (PMNs) and lymphocytes penetrated into the fracture hematoma immediately after surgery and peaked at 24 h.

This study for the first time presents data from both the local and systemic acute response to bone and soft tissue injury in a small animal model. The results of mcrodialysis sampling may serve as a baseline for future investigations on different models and time frames. Several proteins and pathways have been identifeid as potentially important for early bone regeneration warranting in depth analysis in further studies.:I. Table of content
II. List of abbreviations

1 Summary

2 Introduction
2.1 The process of bone healing
2.1.1 Stages of fracture healing
2.1.2 Early stage of inflammation
2.2 Clinical challenges
2.3 Microdialysis
2.3.1 The principle of Microdialysis
2.3.2 Parameters influencing the recovery
2.4 Aim of this study

3 Materials
3.1 Materials, devices and animals
3.2 Chemicals
3.3 Buffers and solutions

4 Methods
4.1 Background
4.2 In vitro microdialysis
4.2.1 Preparation of the protein solution
4.2.2 Microdialysis sampling procedure
4.3 In vivo microdialysis
4.3.1 Surgical procedure
4.3.2 Sample collection
4.4 Plasma samples
4.5 Determination of the fluid recovery
4.6 Determination of the relative recovery
4.7 Total protein measurement
4.8 Cytokine and growth factor analysis
4.8.1 IL-1β, IL-6, TNF-α and PDGF-BB ELISA
4.8.2 VEGF ELISA
4.8.3 TGF-β1 ELISA
4.8.4 BMP-2 ELISA
4.8.5 Proteome profilerTM array
4.9 Proteomic analysis
4.10 Histological analysis
4.11 Statistical analysis

5 Results
5.1 Protein selection
5.2 Determination of fluid recovery in vitro and in vivo
5.3 Determination of relative recovery (RR) in vitro
5.4 Determination of total protein concentration in vivo
5.5 Determination of cytokine and growth factor concentration in the microdialysate in vivo
5.5.1 IL-6 concentration
5.5.2 TGF-β1 concentration
5.5.3 IL-1β concentration
5.5.4 TNF-α concentration
5.5.5 PDGF-BB, BMP-2 and VEGF concentration
5.6 Determination of further cytokines and chemokines in the microdialysate in vivo
5.7 Protein determination using HPLC-MS/MS analysis
5.7.1 Proteins in the microdialysate
5.7.2 Proteins on the surface of the probe
5.8 Protein annotation
5.9 Determination of cytokines and growth factors in the blood plasma
5.9.1 Determination of IL-6 in the blood plasma
5.9.2 Determination of TGF-β1 in the blood plasma
5.9.3 Determination of PDGF-BB in the blood plasma
5.10 Histological analysis of the hematoma

6 Discussion
6.1 Fluid recovery
6.2 Influence of the crystalloid perfusate on relative recovery
6.3 Relative recovery of cytokines and growth factors in vitro
6.4 In vivo microdialysis
6.4.1 Total protein concentration
6.4.2 Annotation of proteins in hematoma identified by HPLC-MS/MS
6.4.3 Identification of cytokines and bone related proteins
6.5 The humoral inflammatory response
6.6 Cellular response

7 Conclusions

8 References

9 Appendix
9.1 Figure index
9.2 Table index
III. Eidesstattliche Erklärung
IV. Selbständigkeitserklärung
V. Acknowledgements / Zur Entwicklung neuer Strategien der Geweberegenerierung in kritischen Knochendefekten, die sich durch Selbstheilungsprozesse nicht schließen, ist das Verständnis der beteiligten physiologischen Prozesse essentiell. Der Wiederaufbau von Gewebe, wie etwa während Knochenheilungsprozesse ist komplex reguliert und erfordert das koordinierte Zusammenspiel einer Vielzahl von Zellen und Mediatoren. Obwohl bereits in zahlreichen Studien die Veränderungen in der Genexpression in den ersten 3 Tagen nach einer akuten oder experimentell induzierten Fraktur untersucht wurden, ist noch immer wenig über die zellulären und humoralen Vorgänge in den frühen Phasen der Knochenheilung in vivo bekannt. Gebräuchliche Analysemethoden erfordern komplexe Verfahren zur Probenentnahme und Nachweisreaktionen währenddessen die biologische Aktivität der untersuchten Mediatoren häufig graduell verloren geht. Die Mikrodialyse hingegen kann in Echtzeit am lebenden Objekt und am Ort der Verletzung durchgeführt werden und bildet somit eine erfolgsversprechende Plattform um die Probengewinnung noch enger mit der anschließenden biochemischen Nachweistechnik zu verbinden.

Im Rahmen dieser Arbeit wurden die optimalen Konditionen zur Mikrodialyse erstmals an einem kritischen Defektmodell eines Ratten-Röhrenknochens zur in vivo und in vitro Applikation ermittelt. Dazu wurde das Vorkommen verschiedener Komponenten der extrazellulären Matrix und ausgewählter Mediatoren während der ersten 24 bis 48 Stunden der Knochenheilung überwacht. Neben der durch Mikrodialyse gewonnenen Proben wurden auch Blutproben verarbeitet um sowohl die lokale, als auch systemische Konzentration der untersuchten Proteine zu erfassen. Durch eine Proteomanalyse konnten zudem bislang in diesem Prozess unbekannte Moleküle identifiziert und verfolgt werden.

Zur Optimierung der Mikrodialyse wurden zunächst die Bedingungen hinsichtlich der Proteinrückgewinnung verbessert. Durch den Zusatz von Rinderserumalbumin (BSA) konnte die Rückgewinnung von Interleukin (IL)-6 erhöht werden. Die maximale relative Rückgewinnung (RR) konnte von 15.0% ohne BSA auf 23.6% mit BSA gesteigert werden. Noch dramatischer war dieser Effekt für den transforming growth factor (TGF)-β1 von dessen eingesetzter Menge in vitro 11.2% detektiert werden konnte, während in der BSA-freien Dialyselösung kein TGF-β1 nachgewiesen wurde. Die RR blieb stets unter der Detektionsgrenze des verwendeten enzyme-linked immunosorbent assay (ELISA).

In vivo-Dialysate enthielten totale Proteinkonzentrationen zwischen 0,20±0,12 mg/mL und 0,44±0,18 mg/mL. Von den innerhalb von 24 h nach Verletzung im Frakturhämatom produzierten Mediatoren wurde IL-6 am stärksten exprimiert. Die höchsten Konzentrationen (309,1pg/mL) konnten hierfür nach 12 bis 15 Stunden nach Einführung des Defekts gemessen werden. Die Konzentrationslevel von TGF-β1 hingegegen betrug nur 3,6 bis 44,0 pg/mL.Mittels high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), konnten 36 Proteine in den über 8 Stunden gewonnenen Mikrodialysaten, und 884 Proteine von Explantaten, die 24 h im Knochendefekt integriert waren, identifiziert werden. Von den im Frakturhämatom identifizierten Proteinen war nur eine Minderheit extrazellulären Ursprungs.

Durch die Proteomanalyse konnten fünf Signalwegskaskaden identifiziert werden. Von diesen trat „FGF (fibroblast growth factor) signaling“ ausschließlich in Knochendefekten, nicht jedoch in den zur Kontrolle mitgeführten reinen Weichgewebedefekten auf. Im Frakturhämatom konnten die, C-X-C motif-Liganden CXCL-1, CXCL-2,CXCL-3, CXCL-4, CXCL-5, CXCL-7, rodent bone protein (RoBo-1), insulin-like growth factor (IGF)-I, und das chitinase-3-like protein 1 nachgewiesen werden. Die identifizierten Proteine könnten von Bedeutung für die Steuerung früher Knochenheilungsprozesse sein.

Histologische Untersuchungen zeigten, dass polymorphkernige Leukozyten (PMNs) und Lymphozyten sofort nach der Operation in das Frakturhämatom einwandern und ihre Anzahl nach etwa 24 h ihr Maximum erreicht. Diese Studie präsentiert erstmals Daten der lokal und systemisch ablaufenden zellulären und humoralen Vorgänge als Antwort auf einen Weichgewebs-bzw. Knochendefekt in einem Nagetier-Kleintiermodell. Die Mikrodialyse-Resultate stellen eine vielversprechende Grundlage für zukünftige Untersuchungen in anderen Modellen dar. Außerdem bilden die hier identifizierten Proteine und Signalwege eine Gruppe potenter Kandidaten für weiterführende Untersuchungen zur Knochenregeration.:I. Table of content
II. List of abbreviations

1 Summary

2 Introduction
2.1 The process of bone healing
2.1.1 Stages of fracture healing
2.1.2 Early stage of inflammation
2.2 Clinical challenges
2.3 Microdialysis
2.3.1 The principle of Microdialysis
2.3.2 Parameters influencing the recovery
2.4 Aim of this study

3 Materials
3.1 Materials, devices and animals
3.2 Chemicals
3.3 Buffers and solutions

4 Methods
4.1 Background
4.2 In vitro microdialysis
4.2.1 Preparation of the protein solution
4.2.2 Microdialysis sampling procedure
4.3 In vivo microdialysis
4.3.1 Surgical procedure
4.3.2 Sample collection
4.4 Plasma samples
4.5 Determination of the fluid recovery
4.6 Determination of the relative recovery
4.7 Total protein measurement
4.8 Cytokine and growth factor analysis
4.8.1 IL-1β, IL-6, TNF-α and PDGF-BB ELISA
4.8.2 VEGF ELISA
4.8.3 TGF-β1 ELISA
4.8.4 BMP-2 ELISA
4.8.5 Proteome profilerTM array
4.9 Proteomic analysis
4.10 Histological analysis
4.11 Statistical analysis

5 Results
5.1 Protein selection
5.2 Determination of fluid recovery in vitro and in vivo
5.3 Determination of relative recovery (RR) in vitro
5.4 Determination of total protein concentration in vivo
5.5 Determination of cytokine and growth factor concentration in the microdialysate in vivo
5.5.1 IL-6 concentration
5.5.2 TGF-β1 concentration
5.5.3 IL-1β concentration
5.5.4 TNF-α concentration
5.5.5 PDGF-BB, BMP-2 and VEGF concentration
5.6 Determination of further cytokines and chemokines in the microdialysate in vivo
5.7 Protein determination using HPLC-MS/MS analysis
5.7.1 Proteins in the microdialysate
5.7.2 Proteins on the surface of the probe
5.8 Protein annotation
5.9 Determination of cytokines and growth factors in the blood plasma
5.9.1 Determination of IL-6 in the blood plasma
5.9.2 Determination of TGF-β1 in the blood plasma
5.9.3 Determination of PDGF-BB in the blood plasma
5.10 Histological analysis of the hematoma

6 Discussion
6.1 Fluid recovery
6.2 Influence of the crystalloid perfusate on relative recovery
6.3 Relative recovery of cytokines and growth factors in vitro
6.4 In vivo microdialysis
6.4.1 Total protein concentration
6.4.2 Annotation of proteins in hematoma identified by HPLC-MS/MS
6.4.3 Identification of cytokines and bone related proteins
6.5 The humoral inflammatory response
6.6 Cellular response

7 Conclusions

8 References

9 Appendix
9.1 Figure index
9.2 Table index
III. Eidesstattliche Erklärung
IV. Selbständigkeitserklärung
V. Acknowledgements

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29266
Date19 October 2015
CreatorsGao, Wenling
ContributorsRammelt, Stefan, Gelinsky, Michael, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0038 seconds