Return to search

Development of an Active Magnetic Attitude Determination and Control System for Picosatellites on highly inclined circular Low Earth Orbits

Small satellites are becoming increasingly important to the aerospace industry mainly due to their significantly reduced development and launch cost as well as shorter development time frames. In order to meet the requirements imposed by critically limited resources of very small satellites, e.g. picosatellites, innovative approaches have to be taken in the design of effective subsystem technologies. This thesis presents the design of an active attitude determination and control system for flight testing on-board the picosatellite 'Compass-1' of the University of Applied Sciences Aachen, Germany. The spacecraft of the CubeSat class with a net spacecraft mass of only 1kg uses magnetic coils as the only means of actuation in order to satisfy operational requirements imposed by its imagery payload placed on a circular and polar Low Earth Orbit. The control system is capable of autonomously dissipating the tumbling rates of the spacecraft after launch interface separ ation and aligning the boresight of the payload into the desired nadir direction within a pointing error of approximately 10°. This nadir-pointing control is achieved by a full-state feedback Linear Quadratic Regulator which drives the attitude quaternion and their respective rates of change into the desired reference. The state of the spacecraft is determined by a static statistical QUEST attitude estimator processing readings of a three-axis magnetometer and a set of five sun sensors. Linear Floquet theory is applied to quantify the stability of the controller and a non-linear dynamics simulation is used to confirm that the attitude asymptotically converges to the reference in the absence of environmental disturbances. In the presence of disturbances the system under control suffers from fundamental underactuaction typical for purely magnetic attitude control but maintains satisfactory alignment accuracies within operational boundaries.

Identiferoai:union.ndltd.org:ADTP/210144
Date January 2006
CreatorsGiesselmann, Jens Uwe Michael, jens.giesselmann@gmx.net
PublisherRMIT University. Aerospace, Mechanical and Manufacturing Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Jens Uwe Michael Giesselmann

Page generated in 0.0022 seconds