Return to search

Natural ventilation in double-skin fa??ade design for office buildings in hot and humid climate

This research seeks to find a design solution for reducing the energy usage in high-rise office buildings in Singapore. There are numerous methods and techniques that could be employed to achieve the purpose of designing energy efficient buildings. The Thesis explores the viability of double-skin fa??ades (DSF) to provide natural ventilation as an energy efficient solution for office buildings in hot and humid environment by using computational fluid dynamic (CFD) simulations and case study methodologies. CFD simulations were used to examine various types of DSF used in office buildings and the behaviour of airflow and thermal transfer through the DSF; the internal thermal comfort levels of each office spaces were analyzed and compared; and an optimization methodology was developed to explore the best DSF configuration to be used in high-rise office buildings in the tropics. The correlation between the fa??ade configurations, the thermal comfort parameters, and the internal office space energy consumption through the DSF is studied and presented. The research outcome of the Thesis has found that significant energy saving is possible if natural ventilation strategies could be exploited with the use of DSF. A prototype DSF configuration which will be best suited for the tropical environment in terms of its energy efficiency through cross ventilation strategy is proposed in this Thesis. A series of comprehensive and user-friendly nomograms for design optimization in selecting the most appropriate double-skin fa??ade configurations with considerations of various orientations for the use in high-rise office buildings in the tropics were also presented.

Identiferoai:union.ndltd.org:ADTP/212655
Date January 2008
CreatorsWong, Pow Chew James, Built Environment, Faculty of Built Environment, UNSW
PublisherPublisher:University of New South Wales. Built Environment
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0027 seconds