Spelling suggestions: "subject:"computational fluid dynamic"" "subject:"eomputational fluid dynamic""
1 |
Prediction of the effects of aerofoil surface irregularities at high subsonic speeds using the Viscous Garabedian and Korn (VKG) methodEl-Ibrahim, Salah Jamil Saleh January 2000 (has links)
No description available.
|
2 |
Highly transient axi-symmetric squeeze flowsKrassnokutski, Alexei E. Krass de 04 April 2011 (has links)
The aim of this work was to use experimental, analytical and computational Computational Fluid
Dynamic - CFD methodologies to investigate so-called highly transient axi-symmetric squeeze flows.
These flows occur between two co-axial and parallel discs which are subjected to an impact, arising from
a falling mass, which induces a constant energy squeezing system, as distinct from the traditionally
investigated constant force or constant velocity squeezing systems.
Experiments were conducted using a test cell comprising two parallel discs of diameter 120 mm with a
flexible bladder used to contain fluid. This test cell was bolted onto the base of a drop-weight tester used
to induce constant energy squeeze flows. Glycerine was used as the working fluid, the temperature of
which was appropriately monitored. Disc separation, together with pressures at three radial positions,
were measured throughout the experimental stroke typically less than 10 ms duration. Two additional
pressure transducers at the same radial position as the outermost transducer were also used to monitor
and subsequently correct for minor non-axi-symmetries that arose in the system. Approximately 150
tests were conducted, embracing combinations of drop height from 0.1 to 1 m, drop mass from 10 to 55
kg and initial disc separation from 3 to 10 mm.
Three elementary features were typically observed: a distinct preliminary pressure spike 1 immediately
after impact corresponding to very large accelerations exceeding over 6 km/s2 in some experiments, a
secondary major pressure spike 2 towards the termination of the stroke corresponding to diminishing
disc separations and a bridging region 3 joining the two spikes corresponding to somewhat reduced
pressures. While pressure distributions were observed to be closely parabolic during the major pressure
spike, some uncertainty was present during the preliminary pressure spike, ascribed to sensitivities to
deviations from axi-symmetry, and the likelihood of inertially generated pressures at the edge of the disc.
The former feature appears not to have been reported on in the formal literature.
iii
Four analytical models were considered, invoking the parallel flow assumption in conjunction with the
Navier Stokes equations: an inviscid/inertial model, a viscous model the lubrication approximation, a
quasi-steady linear QSL model and a quasi-steady corrected linear QSCL model. The first two of these
models, on incorporation of measured disc separations, and the derived velocities and accelerations,
achieved acceptable correlations with pressure measurements largely within uncertainty bounds during
the initial impact and towards the end of the stroke, respectively. The QSL model agreed satisfactorily
with measurements throughout the entire duration of the experiment, while the QSCL model, by
incorporating non-linear effects in an approximate linear way, yielded somewhat better correlations. By
invoking the parallel flow assumption, all four models predict a parabolic radial pressure distribution.
Utilizing a hypothetical case in which variations of disc separation, velocity and acceleration were
considered employing similar magnitudes and timescales to those that were measured, outputs of the
QSL model yielded results that correlated closely with CFD predictions, while the QSCL data were
somewhat better. On the basis of the CFD data it was also inferred that, within practical uncertainty
bounds, the parallel flow assumption was valid for the range of disc separation to radius ratios embraced
in the current investigation.
|
3 |
Modeling and Characterization of Microfabricated Emitters: In Pursuit of Improved ESI-MS PerformanceWu, Xinyun 23 December 2011 (has links)
Electrospray ionization (ESI) has been an invaluable technique to mass spectrometry (MS) especially for analyzing large bio-molecules with unparalleled sensitivity, robustness, and simplicity. Great effort in the development of ESI technique has been devoted in the emitter design, as its shape and geometry have proved pivotal to the electrospray performance and further MS detection. Intrinsic problems for the traditional single-hole emitters including clogging and low throughput limit the applicability of the technique. To address this issue, the current project is focused on developing multiple electrospray (MES) emitters for improved ESI-MS analysis.
In this thesis, joint work of both computational fluid dynamic (CFD) simulations for electrospray and offline electrospray experiments for spray current measurement were performed. Numerical simulations were used to test the effect of various emitter designs on electrospray performance and the laboratory results serve as a guide and validation. The CFD code was based on Taylor-Melcher leaky dielectric model (LDM) and the transient electrospray process was successfully simulated. The method was first validated via a 750 μm inner diameter (i.d.) emitter and further applied to a 20 μm i.d. model. Different stages of the electrospray process were visually demonstrated and the quantitative investigations for the change of spray current under various applied electric fields and flow rates share good agreement with previous simulations and measurements. Based on the single-aperture prototype, MES simulations were performed with 2-hole and 3-hole emitters. Simulation predictions compared favorably with the experimental results. Evidence from this work has proved that CFD simulation can be used as an effective numerical tool to test emitter designs for MES. The benchmarking result on the successful simulation of a microscale emitter electrospray achieved in this work is believed to be the smallest scale of the dynamic simulation for electrospray published to date. / Thesis (Master, Chemistry) -- Queen's University, 2011-12-23 13:36:08.754
|
4 |
Estudo numérico do escoamento ao redor de cilindros flexíveis. / Numerical investigation of flow around flexible cylinders.Lima, Alessandro Alberto de 11 July 2011 (has links)
Este trabalho aborda o escoamento ao redor de cilindros flexíveis com grande razão de aspecto, representando os riser utilizados na indústria petrolífera. O escoamento foi dividido em seções bidimensionais ao longo do comprimento do riser. O método dos vórtices discretos foi utilizado para estimativa dos coeficientes hidrodinâmicos nas seções correspondentes e o acoplamento se dá através da dinâmica estrutural. Esta dinâmica é resolvida pelo método dos elementos finitos implementado no código Anflex (Mourelle et al. (2001)). Processamento paralelo é utilizado para acelerar o desempenho do método numérico. Um esquema master-slave (\"mestre-escravo\") utilizando MPI (Message Passing Interface1) é utilizado para que seja explorado o paralelismo da modelagem. As seções hidrodinâmicas são igualmente divididas ao longo dos nós de um cluster de computadores utilizado nos cálculos. Cada nó do cluster (núcleo de processamento) resolve o escoamento nas seções hidrodinâmicas necessárias. As forças hidrodinâmicas atuando nas seções correspondentes são enviadas ao processo mestre que também é responsável pela resolução da dinâmica estrutural. Uma das contribuições do presente trabalho é a possibilidade de análise de risers em regime pós-crítico, através da imposição do ponto de separação da camada-limite baseado em resultados experimentais, e da modelagem de casos com risers em tandem. O Método dos Vórtices Discretos (MVD) está detalhado de forma a facilitar a implementação computacional, levando em consideração a possibilidade de estudo de interferência entre esteiras de múltiplos corpos. Como primeira aproximação, foram simulados, casos de cilindros rígidos fixos e em base elástica para os quais foram examinadas as amplitudes máximas de oscilação e os coeficientes de arrasto e sustentação. Posteriormente, o MVD foi integrado ao Anflex dando origem ao AnflexCFD, com capacidade de processamento paralelo da parte correspondente ao CFD. Os resultados obtidos numericamente foram comparados a resultados experimentais realizados em laboratório. A metodologia de utilização do MVD para cálculo dos coeficientes hidrodinâmicos é baseada na comparação com resultados experimentais obtidos em laboratório para cilindros rígidos fixos e em base elástica para os quais se observa uma aderência satisfatória com relação aos resultados obtidos numericamente. O resultado do presente trabalho foi a criação de uma ferramenta alternativa no projeto de risers de grande razão de aspecto, como uma forma de avaliação do comportamento dinâmico da estrutura submetida a diferentes perfis de corrente e, consequentemente, a estimativa do tempo de sua vida útil. A característica puramente Lagrangiana do MVD possibilita a simulação de centenas de ciclos de oscilação da estrutura sendo que para os métodos Eulerianos tradicionais de CFD, como o método dos volumes finitos e o método dos elementos finitos, a simulação necessita de um tempo computacional inviável para projeto. A aderência do modelo adotado em relação aos resultados experimentais, aliada a eficiência do MVD, é um indicativo da vantagem da utilização de métodos Lagrangianos na modelagem do escoamento ao redor de cilindros flexíveis com grande razão de aspecto, em relação aos métodos Eulerianos tradicionais. A metodologia apresentada neste trabalho pode ser aplicada utilizando outros métodos de CFD, lembrando que isto pode implicar num aumento significativo do tempo computacional necessário para uma análise. / In this work the dynamic response of a high aspect ratio flexible cylinder due to vortex shedding is numerically investigated. The model is divided in two-dimensional sections along the riser length. The discrete vortex method (DVM) is employed for the assessment of the hydrodynamic forces acting on these two-dimensional sections. The hydrodynamic sections are solved independently, and the coupling among the sections is taken into account by the solution of the structure in the time domain by the finite element method implemented in Anflex code (Mourelle et al. (2001)). Parallel processing is employed to improve the performance of the method. A master-slave approach via MPI (Message Passing Interface) is used to exploit the parallelism of the present code. The riser sections are equally divided among the nodes of the cluster. Each node solves the hydrodynamic sections assigned to it. The forces acting on the sections are then passed to the master processor, which is responsible for the calculation of the displacement of the whole structure. One of the main contributions of the present work is the possibility of simulating the flow around flexible cylinders in the pos-critical regime and around bundle of risers.
|
5 |
Ignition enhancement for scramjet combustionMcGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
|
6 |
Natural ventilation in double-skin fa??ade design for office buildings in hot and humid climateWong, Pow Chew James, Built Environment, Faculty of Built Environment, UNSW January 2008 (has links)
This research seeks to find a design solution for reducing the energy usage in high-rise office buildings in Singapore. There are numerous methods and techniques that could be employed to achieve the purpose of designing energy efficient buildings. The Thesis explores the viability of double-skin fa??ades (DSF) to provide natural ventilation as an energy efficient solution for office buildings in hot and humid environment by using computational fluid dynamic (CFD) simulations and case study methodologies. CFD simulations were used to examine various types of DSF used in office buildings and the behaviour of airflow and thermal transfer through the DSF; the internal thermal comfort levels of each office spaces were analyzed and compared; and an optimization methodology was developed to explore the best DSF configuration to be used in high-rise office buildings in the tropics. The correlation between the fa??ade configurations, the thermal comfort parameters, and the internal office space energy consumption through the DSF is studied and presented. The research outcome of the Thesis has found that significant energy saving is possible if natural ventilation strategies could be exploited with the use of DSF. A prototype DSF configuration which will be best suited for the tropical environment in terms of its energy efficiency through cross ventilation strategy is proposed in this Thesis. A series of comprehensive and user-friendly nomograms for design optimization in selecting the most appropriate double-skin fa??ade configurations with considerations of various orientations for the use in high-rise office buildings in the tropics were also presented.
|
7 |
Development Of An Octree Based Grid Coarsening And Multigrid Flow SolutionMahmutyazicioglu, Emel 01 September 2010 (has links) (PDF)
The multigrid technique is one of the most effective techniques to achieve the reduction of the CPU cost for flow solvers. The multigrid strategy uses the multilevel grids which are the coarsening subsets of fine grid. An explicit solver rapidly reduces the high frequency errors on the computational grids. Since high frequency errors on coarse grids correspond to low frequency errors on fine grids, cycling through the coarse grid levels rapidly reduces the errors ranging from high-to-low frequency. The aim of this study is, therefore, to accelerate SENSE3D solver developed by TUBITAK-SAGE by implementating multigrid concept.
In this work, a novel grid coarsening method suitable for cell-centered hybrid/unstructured grids is developed to provide the cells with high aspect ratio. This new grid coarsening technique relies on the agglomeration of cells based on their distribution on octree data structure. Then, the multigrid strategy is implemented to the baseline flow solver. During this implementation, the flux calculation along the face loops is modified without changing cell-centered scheme.
The performance of the coarsening algorithm is investigated for all grid types in two and three dimension. The grid coarsening algorithm produces well defined, nested, body fitted coarser grids with aspect ratios of one and the coarse grids have similar characteristics of Cartesian grids. Then, the multigrid flow solutions are obtained at inviscid, laminar and turbulent flows. It is shown that, the convergence accelerations are up to 14 times for inviscid flows and in a range of 4 to 110 fold for turbulent flow solutions.
|
8 |
Numerical and Experimental Investigations of the Machinability of Ti6AI4V : Energy Efficiency and Sustainable Cooling/ Lubrication StrategiesPervaiz, Salman January 2015 (has links)
Titanium alloys are widely utilized in the aerospace, biomedical,marine, petro-chemical and other demanding industries due to theirdurability, high fatigue resistance and ability to sustain elevateoperating temperature. As titanium alloys are difficult to machine, dueto which machining of these alloys ends up with higher environmentalburden. The industry is now embracing the sustainable philosophy inorder to reduce their carbon footprint. This means that the bestsustainable practices have to be used in machining of titanium alloys aswell as in an effort to reduce the carbon footprint and greenhouse gas(GHG) emissions.In this thesis, a better understanding towards the feasibility of shiftingfrom conventional (dry and flood) cooling techniques to the vegetableoil based minimum quantity cooling lubrication (MQCL) wasestablished. Machining performance of MQCL cooling strategies wasencouraging as in most cases the tool life was found close to floodstrategy or sometimes even better. The study revealed that theinfluence of the MQCL (Internal) application method on overallmachining performance was more evident at higher cutting speeds. Inaddition to the experimental machinability investigations, FiniteElement Modeling (FEM) and Computational Fluid Dynamic (CFD)Modeling was also employed to prediction of energy consumed inmachining and cutting temperature distribution on the cutting tool. Allnumerical results were found in close agreement to the experimentaldata. The contribution of the thesis should be of interest to those whowork in the areas of sustainable machining. / <p>QC 20150915</p>
|
9 |
Natural ventilation in double-skin fa??ade design for office buildings in hot and humid climateWong, Pow Chew James, Built Environment, Faculty of Built Environment, UNSW January 2008 (has links)
This research seeks to find a design solution for reducing the energy usage in high-rise office buildings in Singapore. There are numerous methods and techniques that could be employed to achieve the purpose of designing energy efficient buildings. The Thesis explores the viability of double-skin fa??ades (DSF) to provide natural ventilation as an energy efficient solution for office buildings in hot and humid environment by using computational fluid dynamic (CFD) simulations and case study methodologies. CFD simulations were used to examine various types of DSF used in office buildings and the behaviour of airflow and thermal transfer through the DSF; the internal thermal comfort levels of each office spaces were analyzed and compared; and an optimization methodology was developed to explore the best DSF configuration to be used in high-rise office buildings in the tropics. The correlation between the fa??ade configurations, the thermal comfort parameters, and the internal office space energy consumption through the DSF is studied and presented. The research outcome of the Thesis has found that significant energy saving is possible if natural ventilation strategies could be exploited with the use of DSF. A prototype DSF configuration which will be best suited for the tropical environment in terms of its energy efficiency through cross ventilation strategy is proposed in this Thesis. A series of comprehensive and user-friendly nomograms for design optimization in selecting the most appropriate double-skin fa??ade configurations with considerations of various orientations for the use in high-rise office buildings in the tropics were also presented.
|
10 |
Ignition enhancement for scramjet combustionMcGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
|
Page generated in 0.1218 seconds