Return to search

Optimisation and improvement of the design of scarf repairs to aircraft

Flush repairs to military aircraft are expected to become more prevalent as more thick skin composites are used, particularly on the surface of the fuselage, wings and other external surfaces. The use of these repairs, whilst difficult to manufacture provide an aerodynamic, ???stealthy??? finish that is also more structurally efficient than overlap repairs. This research was undertaken to improve the design methodology of scarf repairs with reduced material removal and to investigate the damage tolerance of scarf repair to low velocity impact damage. Scarf repairs involve shallow bevel angles to ensure the shear stress in the adhesive does not exceed allowable strength. This is important when repairing structures that need to withstand hot and humid conditions, when the adhesive properties degrade. Therefore, considerable amounts of parent material must be machined away prior to repair. The tips of the repair patch and the parent laminate are very sharp, thus a scarf repair is susceptible to accidental damage. The original contributions include: ??? Developed analytic means of predicting the stresses within optimised scarf joints with dissimilar materials. New equations were developed and solved using numerical algorithms. ??? Verified using finite element modelling that a scarfed insert with dissimilar modulus subjected to uniaxial loading attracted the same amount of load as an insert without a scarf. As such, the simple analytic formula used to predict load attraction/diversion through a plate with an insert may be used to predict the load attraction/diversion into a scarf repair that contains a dissimilar adherend patch. ??? Developed a more efficient flush joint with a doubler insert placed near the mid line of the parent structure material. This joint configuration has a lower load eccentricity than external doubler joint. ??? Investigated the damage tolerance of scarf joints, with and without the external doubler. The results showed that scarf joints without external doublers exhibited a considerable strength reduction following low velocity impact. Based on the observations, the major damage mechanics in the scarf joint region following impact have been identified. These results demonstrated that it is important to incorporate damage tolerance in the design of scarf repairs.

Identiferoai:union.ndltd.org:ADTP/242503
Date January 2006
CreatorsHarman, Alex Bruce, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW
PublisherAwarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Alex Bruce Harman, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0019 seconds