• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and analysis of airborne antenna radiation patterns /

Kim, Jacob Jeong-Geun January 1985 (has links)
No description available.
2

Structural acoustic optimization of an aircraft fuselage using the complex method

Dater, Brian Scott 12 1900 (has links)
No description available.
3

Structural acoustic design optimization of cylinders using FEM/BEM

Crane, Scott P. 08 1900 (has links)
No description available.
4

Active control of interior noise using piezoelectric actuators in a large-scale composite fuselage model

Lefebvre, Sylvie 17 March 2010 (has links)
Active control of single-frequency interior noise in a realistic composite aircraft fuselage is experimentally studied. The control inputs are due to piezoelectric actuators bonded to the cylinder wall while error information from the interior acoustic field is sensed by microphones. A preliminary analytical development was conducted to investigate the mechanisms of the structural/acoustic coupling exhibited by a simple cylindrical model in order to gain more inSight into the coupling properties of the piezoelectric actuators with the cylinder. Therefore, the response of a homogeneous, simply-supported cylindrical shell to the excitation of piezoelectric actuators was presented. The analytical results show that a piezoelectric actuator pair excited in-phase (stretching model) created a lower order circumferential interior acoustic field, more suitable to control the interior noise at low frequency than the same piezoelectric actuator pair excited in out-of-phase (bending model). The experiments were performed in the large anechoic chamber of the Acoustics Research Laboratory at NASA Langley Research Center at Hampton, Virginia and utilized a 1.68 m diameter, 3.66 m length composite aircraft structure, equipped with stringers, ring frames and a cabin floor. The narrowband controller used in these experiments was a four channel adaptive LMS algorithm implemented on a TMS320C25 system board. Results showed that global reduc1:ion of the interior sound pressure level of the order of 12 dB could be obtained using piezoelectric actuators. The influence of the sensor/actuator location and configuration as well as the frequency of excitation was studied. In general this investigation validates active control using piezoelectric actuators bonded to the fuselage to reduce the interior noise inside realistic aircraft structures. / Master of Science
5

Optimisation and improvement of the design of scarf repairs to aircraft

Harman, Alex Bruce, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Flush repairs to military aircraft are expected to become more prevalent as more thick skin composites are used, particularly on the surface of the fuselage, wings and other external surfaces. The use of these repairs, whilst difficult to manufacture provide an aerodynamic, ???stealthy??? finish that is also more structurally efficient than overlap repairs. This research was undertaken to improve the design methodology of scarf repairs with reduced material removal and to investigate the damage tolerance of scarf repair to low velocity impact damage. Scarf repairs involve shallow bevel angles to ensure the shear stress in the adhesive does not exceed allowable strength. This is important when repairing structures that need to withstand hot and humid conditions, when the adhesive properties degrade. Therefore, considerable amounts of parent material must be machined away prior to repair. The tips of the repair patch and the parent laminate are very sharp, thus a scarf repair is susceptible to accidental damage. The original contributions include: ??? Developed analytic means of predicting the stresses within optimised scarf joints with dissimilar materials. New equations were developed and solved using numerical algorithms. ??? Verified using finite element modelling that a scarfed insert with dissimilar modulus subjected to uniaxial loading attracted the same amount of load as an insert without a scarf. As such, the simple analytic formula used to predict load attraction/diversion through a plate with an insert may be used to predict the load attraction/diversion into a scarf repair that contains a dissimilar adherend patch. ??? Developed a more efficient flush joint with a doubler insert placed near the mid line of the parent structure material. This joint configuration has a lower load eccentricity than external doubler joint. ??? Investigated the damage tolerance of scarf joints, with and without the external doubler. The results showed that scarf joints without external doublers exhibited a considerable strength reduction following low velocity impact. Based on the observations, the major damage mechanics in the scarf joint region following impact have been identified. These results demonstrated that it is important to incorporate damage tolerance in the design of scarf repairs.
6

A nonlocal damage theory for laminated plate with application to aircraft damage tolerance

Nahan, Matthew F. 02 July 1997 (has links)
Design of commercial aircraft structure, composed of composite material, requires the prediction of failure loads given large scale damage. In particular, a fuselage of graphite/epoxy lamination was analyzed for damage tolerance given a standard large crack that severed both skin and internal structure. Upon loading, a zone of damage is known to develop in front of a crack-tip in composite laminates; and, its material behavior within the damage zone is characterized as strain softening. This investigation sought to develop a computational model that simulates progressive damage growth and predicts failure of complex laminated shell structures subject to combined tensile and flexural load conditions. This was accomplished by assuming a macroscopic definition of orthotropic damage that is allowed to vary linearly through the shell thickness. It was further proposed that nonlocal plate strain and curvature act to force damage growth according to a set of uniaxial criteria. Damage induced strain softening is exhibited by degradation of laminate stiffness. An expression for the damage reduced laminated plate stiffness was derived which assumed the familiar laminated plate [AM] stiffness matrix format. The model was implemented in a finite element shell program for simulation of fracture and evaluation of damage tolerance. Laminates were characterized for damage resistance according to material parameters defining nonlocal strain and the damage growth criteria. These parameters were selected using an inverse method to correlate simulation with uniaxial strength and fracture test results. A novel combined tension-plus-flexure fracture test was developed to facilitate this effort. Analysis was performed on a section of pressurized composite fuselage containing a large crack. Good agreement was found between calculations and test results. / Graduation date: 1998
7

Optimisation and improvement of the design of scarf repairs to aircraft

Harman, Alex Bruce, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Flush repairs to military aircraft are expected to become more prevalent as more thick skin composites are used, particularly on the surface of the fuselage, wings and other external surfaces. The use of these repairs, whilst difficult to manufacture provide an aerodynamic, ???stealthy??? finish that is also more structurally efficient than overlap repairs. This research was undertaken to improve the design methodology of scarf repairs with reduced material removal and to investigate the damage tolerance of scarf repair to low velocity impact damage. Scarf repairs involve shallow bevel angles to ensure the shear stress in the adhesive does not exceed allowable strength. This is important when repairing structures that need to withstand hot and humid conditions, when the adhesive properties degrade. Therefore, considerable amounts of parent material must be machined away prior to repair. The tips of the repair patch and the parent laminate are very sharp, thus a scarf repair is susceptible to accidental damage. The original contributions include: ??? Developed analytic means of predicting the stresses within optimised scarf joints with dissimilar materials. New equations were developed and solved using numerical algorithms. ??? Verified using finite element modelling that a scarfed insert with dissimilar modulus subjected to uniaxial loading attracted the same amount of load as an insert without a scarf. As such, the simple analytic formula used to predict load attraction/diversion through a plate with an insert may be used to predict the load attraction/diversion into a scarf repair that contains a dissimilar adherend patch. ??? Developed a more efficient flush joint with a doubler insert placed near the mid line of the parent structure material. This joint configuration has a lower load eccentricity than external doubler joint. ??? Investigated the damage tolerance of scarf joints, with and without the external doubler. The results showed that scarf joints without external doublers exhibited a considerable strength reduction following low velocity impact. Based on the observations, the major damage mechanics in the scarf joint region following impact have been identified. These results demonstrated that it is important to incorporate damage tolerance in the design of scarf repairs.
8

Optimal design of composite fuselage frames for crashworthiness

Woodson, Marshall Benjamin 14 August 2006 (has links)
This study looks at the feasibility of using structural optimization techniques to address the problem of designing composite fuselage frames for crashworthiness. A key feature of any optimization strategy for increasing structural crashworthiness is a progressive failure analysis. Currently, the most widely used analysis methods for progressive failure of composite structures are considered too expensive computationally for practical optimization in today's computing environment. Developing an efficient analysis method for progressive failure of composite frames is a first step in the optimization for crashworthiness. In the current work a progressive failure analysis for thin-walled open cross-section curved composite frames is developed using a Vlasov type beam theory. A curved thin-walled composite beam theory is developed and a finite element implementation of the beam theory is used for progressive failure analysis. The accuracy and limitations of this analysis method are discussed. A model for progressive failure of the composite fuselage frame is developed from an extension of the laminate progressive failure analysis of Tsai-Wu. Comparisons based on a limited amount of available experimental data are encouraging. The first major failure event is captured by the theory, and the prediction of total energy absorbed follows the trend of the experimental data. It is believed that this accuracy is sufficient for preliminary design and optimization for crashworthiness. This progressive failure analysis is then incorporated into a frame optimization for crashworthiness based on the genetic algorithm method. The optimization methodology is demonstrated analytically to obtain frame designs with substantially increased crashworthlness. Laminate stacking sequence and cross-section shape are design variables for optimization / Ph. D.
9

Rule-based fuselage and spine and cross-section methods for computer aided design of aircraft components

Kelly, John H. 23 June 2009 (has links)
In recent years, the use of computer-aided design (CAD) systems for conceptual aircraft design has greatly increased. As a result, new and better methods for creating surface models of aircraft geometry using dimensional parameters are needed. One such method, the Rule-Based Fuselage method, was suggested by Lockheed. The Rule-Based Fuselage method allows an aircraft designer to define complex aircraft fuselage geometry by specifying the fuselage profile and individual parametric cross-sections along the fuselage. This thesis describes the Rule-Based Fuselage method and discusses the implementation of the method in an interactive, object-oriented environment. Also included in this system is the Spine and Cross-Section method for creating arbitrarily shaped aircraft components. The design and implementation of both the Rule-Based Fuselage and Spine and Cross-Section methods are described. The integration of these methods with the conceptual aircraft design code, ACSYNT, is also discussed. / Master of Science
10

Influence of error sensor and control source configuration and type upon the performance of active noise control systems / Anthony C. Zander.

Zander, Anthony Charles January 1994 (has links)
Bibliography : leaves 237-251. / x, 251 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Mechanical Engineering, 1994

Page generated in 0.0529 seconds