Return to search

Light Scattering in Complex Mesoscale Systems: Modelling Optical Trapping and Micromachines

Optical tweezers using highly focussed laser beams can be used to exert forces and torques and thus drive micromachines. This opens up a new field of microengineering, whose potential has yet to be fully realized. Until now, methods that have been used for modelling optical tweezers are limited to scatterers that are homogeneous or that have simple geometry. To aid in designing more general micromachines, I developed and implemented two main methods for modelling the micromachines that we use. These methods can be used for further proposed structures to be fabricated. The first is a FDFD/T-matrix hybrid method that incorporates the finite difference frequency domain (FDFD) method, which is used for inhomogeneous and anisotropic media, with vector spherical wave functions (VSWF) to formulate the T-matrix. The T-matrix is then used to calculate the torque of the trapped vaterite sphere, which is apparently composed of birefringent unit crystals but the bulk structure appears to be arranged in a sheaf-of-wheat fashion. The second method is formulating the T-matrix via discrete dipole approximation (DDA) of complex arbitrarily shaped mesoscale objects and implementing symmetry optimizations to allow calculations to be performed on high-end desktop PCs that are otherwise impractical due to memory requirements and calculation time. This method was applied to modelling microrotors. The T-matrix represents the scattering properties of an object for a given wavelength. Once it is calculated, subsequent calculations with different illumination conditions can be performed rapidly. This thesis also deals with studies of other light scattering phenomena including the modelling of scattered fields from protein molecules subsequently used to model FRET resonance, determining the limits of trappability, interferometric Brownian motion and the comparison between integral transforms by direct numerical integration and overdetermined point-matching.

Identiferoai:union.ndltd.org:ADTP/254206
CreatorsVincent Loke
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0021 seconds