• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Light Scattering in Complex Mesoscale Systems: Modelling Optical Trapping and Micromachines

Vincent Loke Unknown Date (has links)
Optical tweezers using highly focussed laser beams can be used to exert forces and torques and thus drive micromachines. This opens up a new field of microengineering, whose potential has yet to be fully realized. Until now, methods that have been used for modelling optical tweezers are limited to scatterers that are homogeneous or that have simple geometry. To aid in designing more general micromachines, I developed and implemented two main methods for modelling the micromachines that we use. These methods can be used for further proposed structures to be fabricated. The first is a FDFD/T-matrix hybrid method that incorporates the finite difference frequency domain (FDFD) method, which is used for inhomogeneous and anisotropic media, with vector spherical wave functions (VSWF) to formulate the T-matrix. The T-matrix is then used to calculate the torque of the trapped vaterite sphere, which is apparently composed of birefringent unit crystals but the bulk structure appears to be arranged in a sheaf-of-wheat fashion. The second method is formulating the T-matrix via discrete dipole approximation (DDA) of complex arbitrarily shaped mesoscale objects and implementing symmetry optimizations to allow calculations to be performed on high-end desktop PCs that are otherwise impractical due to memory requirements and calculation time. This method was applied to modelling microrotors. The T-matrix represents the scattering properties of an object for a given wavelength. Once it is calculated, subsequent calculations with different illumination conditions can be performed rapidly. This thesis also deals with studies of other light scattering phenomena including the modelling of scattered fields from protein molecules subsequently used to model FRET resonance, determining the limits of trappability, interferometric Brownian motion and the comparison between integral transforms by direct numerical integration and overdetermined point-matching.
2

Light Scattering in Complex Mesoscale Systems: Modelling Optical Trapping and Micromachines

Vincent Loke Unknown Date (has links)
Optical tweezers using highly focussed laser beams can be used to exert forces and torques and thus drive micromachines. This opens up a new field of microengineering, whose potential has yet to be fully realized. Until now, methods that have been used for modelling optical tweezers are limited to scatterers that are homogeneous or that have simple geometry. To aid in designing more general micromachines, I developed and implemented two main methods for modelling the micromachines that we use. These methods can be used for further proposed structures to be fabricated. The first is a FDFD/T-matrix hybrid method that incorporates the finite difference frequency domain (FDFD) method, which is used for inhomogeneous and anisotropic media, with vector spherical wave functions (VSWF) to formulate the T-matrix. The T-matrix is then used to calculate the torque of the trapped vaterite sphere, which is apparently composed of birefringent unit crystals but the bulk structure appears to be arranged in a sheaf-of-wheat fashion. The second method is formulating the T-matrix via discrete dipole approximation (DDA) of complex arbitrarily shaped mesoscale objects and implementing symmetry optimizations to allow calculations to be performed on high-end desktop PCs that are otherwise impractical due to memory requirements and calculation time. This method was applied to modelling microrotors. The T-matrix represents the scattering properties of an object for a given wavelength. Once it is calculated, subsequent calculations with different illumination conditions can be performed rapidly. This thesis also deals with studies of other light scattering phenomena including the modelling of scattered fields from protein molecules subsequently used to model FRET resonance, determining the limits of trappability, interferometric Brownian motion and the comparison between integral transforms by direct numerical integration and overdetermined point-matching.
3

Entwicklung eines miniaturisierten Ionenfilters und Detektors für die potentielle Anwendung in Ionenmobilitätsspektrometern

Graf, Alexander 22 May 2015 (has links) (PDF)
Die Ionenmobilitätsspektrometrie ermöglicht eine selektive Detektion von niedrigkonzentrierten Gasen in Luft. Darauf beruhende Analysegeräte können verhältnismäßig einfach umgesetzt werden und in vielfältigen mobilen Einsatzszenarien wie der Umweltanalytik Anwendung finden. Die vorliegende Dissertation gibt einen Überblick über die Grundlagen der Ionenmobilitätsspektrometrie und setzt die funktionellen Teilkomponenten Ionenfilter und Ionendetektor mit Mikrosystemtechniken um. Dafür werden Möglichkeiten aus dem Stand der Technik vorgestellt und eine für die Umsetzung optimale Variante identifiziert. Ein Ionenfilter basierend auf der Differenzionenmobilitätsspektrometrie zeigt diesbezüglich ein sehr geeignetes Skalierungsverhalten. Zur Integration in einen Demonstrator-Chip wird ein neuartiges Bauelementkonzept verfolgt, mit technologischen Vorversuchen untersetzt und erfolgreich in einen Gesamtherstellungsablauf überführt. Mit Hilfe von weiterführenden analytischen Untersuchungen werden spezifische Phänomene bei der elektrischen Kontaktierung der verwendeten BSOI-Wafer als Ausgangsmaterial hergeleitet und Empfehlungen zur Vermeidung gegeben. Der Funktionsnachweis der Teilkomponente Ionendetektor wird anhand von hergestellten Demonstrator-Chips und mit Hilfe eines entwickelten Versuchsaufbaus begonnen. Es werden die weiteren Schritte zum Nachweis der Gesamtfunktionalität abgeleitet und festgehalten. Auf Basis des umgesetzten Bauelement- und Technologiekonzepts und der vorliegenden Ergebnisse, wird das entwickelte und realisierte Gesamtkonzept als sehr aussichtsreich hinsichtlich der favorisierten Verwendung als Teilkomponente eines miniaturisierten Ionenmobilitätsspektrometers eingeschätzt.
4

Entwicklung eines miniaturisierten Ionenfilters und Detektors für die potentielle Anwendung in Ionenmobilitätsspektrometern

Graf, Alexander 19 February 2015 (has links)
Die Ionenmobilitätsspektrometrie ermöglicht eine selektive Detektion von niedrigkonzentrierten Gasen in Luft. Darauf beruhende Analysegeräte können verhältnismäßig einfach umgesetzt werden und in vielfältigen mobilen Einsatzszenarien wie der Umweltanalytik Anwendung finden. Die vorliegende Dissertation gibt einen Überblick über die Grundlagen der Ionenmobilitätsspektrometrie und setzt die funktionellen Teilkomponenten Ionenfilter und Ionendetektor mit Mikrosystemtechniken um. Dafür werden Möglichkeiten aus dem Stand der Technik vorgestellt und eine für die Umsetzung optimale Variante identifiziert. Ein Ionenfilter basierend auf der Differenzionenmobilitätsspektrometrie zeigt diesbezüglich ein sehr geeignetes Skalierungsverhalten. Zur Integration in einen Demonstrator-Chip wird ein neuartiges Bauelementkonzept verfolgt, mit technologischen Vorversuchen untersetzt und erfolgreich in einen Gesamtherstellungsablauf überführt. Mit Hilfe von weiterführenden analytischen Untersuchungen werden spezifische Phänomene bei der elektrischen Kontaktierung der verwendeten BSOI-Wafer als Ausgangsmaterial hergeleitet und Empfehlungen zur Vermeidung gegeben. Der Funktionsnachweis der Teilkomponente Ionendetektor wird anhand von hergestellten Demonstrator-Chips und mit Hilfe eines entwickelten Versuchsaufbaus begonnen. Es werden die weiteren Schritte zum Nachweis der Gesamtfunktionalität abgeleitet und festgehalten. Auf Basis des umgesetzten Bauelement- und Technologiekonzepts und der vorliegenden Ergebnisse, wird das entwickelte und realisierte Gesamtkonzept als sehr aussichtsreich hinsichtlich der favorisierten Verwendung als Teilkomponente eines miniaturisierten Ionenmobilitätsspektrometers eingeschätzt.:1 Einleitung 1.1 Motivation und Zielstellung 1.2 Aufbau und Gliederung der Arbeit 2 Grundlagen zur Ionenmobilitätsspektrometrie 2.1 Grundprinzip der Ionenmobilitätsspektrometrie 2.2 Anwendungsfelder und Substanzen 2.3 Grundlagen der Ionenbewegung 2.4 Ionenquellen 2.4.1 Ionisation mittels radioaktiver Strahlungsquellen 2.4.2 Photoionisation 2.4.3 Weitere Ionenquelle 2.4.4 Vergleich von Ionenquellen 2.5 Ionendetektion 2.6 Bewertungskriterien Ionenmobilitätsspektrometer 3 Stand der Technik Ionenfilter 3.1 Überblick und Einteilung Ionenfilter 3.2 Zeitaufgelöste Detektion 3.3 Ortsaufgelöste Detektion 3.4 Differenz der Ionenmobilität 3.4.1 Differenzionenmobilitätsspektrometrie 3.4.2 Transversal Modulation Ionenfilter 3.5 Sonstige Filterrealisierungen 3.5.1 Ionenfilter mit Gegengasströmung 3.5.2 Travelling Wave Filter 3.6 Vergleich Ionenfilter für ein miniaturisiertes Ionenmobilitätsspektrometer 3.7 Konkretisierte Zielstellung der Arbeit 4 Konzeptionelle Vorarbeiten 4.1 Modellbildung und Dimensionierung des Ionenfilters 4.1.1 Allgemeine Lösung der Bewegungsgleichung 4.1.2 Lösung für den Spezialfall mit Rechteckanregung 4.1.3 Randbedingungen bei der Filterauslegung 4.1.4 Elektrische Simulation des Ionenfilters mit diskreten Elementen 4.1.5 Auslegung eines miniaturisierten Ionenfilters 4.2 Modellbildung und Auslegung des Ionendetektors 4.3 Ableitung eines relevanten Parameterraums 5 Voruntersuchungen und Empfehlungen zur technologischen Umsetzung 5.1 Herleitung des Bauelementkonzepts 5.1.1 Konzept 1 – Planar-Aufbau 5.1.2 Konzept 2 – Sandwich-Struktur 5.1.3 Konzept 3 – Erweiterte Tiefenstruktur 5.1.4 Ableitung des umzusetzenden Bauelementkonzepts 5.2 Konzept zur Herstellung der Ionenkanäle 5.2.1 Nasschemische Siliziumstrukturierung mit TMAH 5.2.2 Trockenchemische Siliziumstrukturierung mit DRIE 5.2.3 Durchführung und Ergebnisse des Vorversuchs 5.2.4 Schlussfolgerung und Ausblick für die Herstellung der Elektrodenkanäle 5.3 Konzept zur Realisierung der Elektrodenkontakte 5.3.1 Möglichkeiten zur Kontaktierung der Elektrodenstrukturen 5.3.2 Verfahren und Materialien für das Erzeugen von Isolationen 5.3.3 Verfahren und Materialien für das Abscheiden von Metallen 5.3.4 Besonderheiten beim Metall-Halbleiter-Kontakt 5.3.5 Ableiten eines Technologieablaufs und Durchführung eines Versuchs zur Herstellung der Rückseitenkontakte 5.3.6 Elektrische Charakterisierung der Rückseitenkontakte 5.3.7 Ausblick zur weiteren Bewertung der Rückseitenkontakte 5.4 Überblick über relevante Waferbondverfahren 5.5 Konzept für die Aufbau- und Verbindungstechnik 5.6 Integration der Vorversuche in ein erweitertes Bauelementkonzept 6 Bauelementauslegung für ein Ionenmobilitätsspektrometer 6.1 Voruntersuchungen für die Bauelementdimensionierung 6.1.1 Simulation des elektrischen Verhaltens mit einem erweiterten Ersatzschaltbild 6.1.2 Dimensionierung des Einströmbereichs und des Vorfilters 6.2 Zusammenfassung der Voruntersuchungen und Ableitung von Designvarianten 7 Technologische Umsetzung und Untersuchung der Kontaktproblematik 7.1 Umsetzung Filter- und Detektordemonstrator 7.1.1 Auswahl der Metallisierung 7.1.2 Erstellen eines detailliertern Gesamttechnologieablaufs 7.1.3 Verifikation des umgesetzten Herstellungsprozesses an den realisierten Demonstrator-Chips 7.2 Untersuchung Metall-Halbleiter-Kontakt 7.2.1 Untersuchung Metall-Halbleiter-Interface 7.2.2 Einfluss des Ausheilschritts auf das Kontaktverhalten 7.2.3 Untersuchung des Dotierungs- und Leitfähigkeitsprofils 7.2.4 Herleitung einer möglichen Ursachenkette für die Bor-Kontamination 7.2.5 Gegenprüfung der Ursachenkette und Schlussfolgerung 7.3 Zusammenfassung Technologieablauf 8 Charakterisierung der Teilkomponenten 8.1 Konzeptionelle Vorarbeiten zum Versuchsaufbau 8.1.1 Methoden zur Testgaserzeugung 8.1.2 Integration des IMS-Chips in die Gasversorgung 8.1.3 Elektronikanbindung 8.2 Versuchsaufbau und Versuchsplanung 8.2.1 Beschreibung Versuchsaufbau 8.2.2 Planung der Versuche für Bewertung Ionendetektor 8.2.3 Planung der Versuche für Bewertung Ionenfilter 8.3 Versuche und Bewertung Ionendetektor 8.3.1 Versuchsdurchführung 8.3.2 Auswertung Ionendetektor 8.4 Zusammenfassung und Ausblick der Charakterisierung 9 Zusammenfassung und Ausblick Literaturverzeichnis

Page generated in 0.0666 seconds