• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantifizierung von Propofol in der Atemluft mittels endtidaler Ionenmobilitätsspektrometrie / Quantification of Propofol in end-tidal breath by using ion mobility spectrometry

Carstens, Eike T.H. 27 June 2011 (has links)
No description available.
2

Quantifizierung von Sevofluran an Anästhesiearbeitsplätzen mittels Ionenmobilitätsspektrometrie / Quantification of occupational exposure to sevoflurane in anaesthesia workplaces using multi- capillary column- ion mobility spectrometry (MCC- IMS)

Weigel, Cathrin 11 August 2014 (has links)
No description available.
3

Entwicklung eines miniaturisierten Ionenfilters und Detektors für die potentielle Anwendung in Ionenmobilitätsspektrometern

Graf, Alexander 22 May 2015 (has links) (PDF)
Die Ionenmobilitätsspektrometrie ermöglicht eine selektive Detektion von niedrigkonzentrierten Gasen in Luft. Darauf beruhende Analysegeräte können verhältnismäßig einfach umgesetzt werden und in vielfältigen mobilen Einsatzszenarien wie der Umweltanalytik Anwendung finden. Die vorliegende Dissertation gibt einen Überblick über die Grundlagen der Ionenmobilitätsspektrometrie und setzt die funktionellen Teilkomponenten Ionenfilter und Ionendetektor mit Mikrosystemtechniken um. Dafür werden Möglichkeiten aus dem Stand der Technik vorgestellt und eine für die Umsetzung optimale Variante identifiziert. Ein Ionenfilter basierend auf der Differenzionenmobilitätsspektrometrie zeigt diesbezüglich ein sehr geeignetes Skalierungsverhalten. Zur Integration in einen Demonstrator-Chip wird ein neuartiges Bauelementkonzept verfolgt, mit technologischen Vorversuchen untersetzt und erfolgreich in einen Gesamtherstellungsablauf überführt. Mit Hilfe von weiterführenden analytischen Untersuchungen werden spezifische Phänomene bei der elektrischen Kontaktierung der verwendeten BSOI-Wafer als Ausgangsmaterial hergeleitet und Empfehlungen zur Vermeidung gegeben. Der Funktionsnachweis der Teilkomponente Ionendetektor wird anhand von hergestellten Demonstrator-Chips und mit Hilfe eines entwickelten Versuchsaufbaus begonnen. Es werden die weiteren Schritte zum Nachweis der Gesamtfunktionalität abgeleitet und festgehalten. Auf Basis des umgesetzten Bauelement- und Technologiekonzepts und der vorliegenden Ergebnisse, wird das entwickelte und realisierte Gesamtkonzept als sehr aussichtsreich hinsichtlich der favorisierten Verwendung als Teilkomponente eines miniaturisierten Ionenmobilitätsspektrometers eingeschätzt.
4

Entwicklung eines miniaturisierten Ionenfilters und Detektors für die potentielle Anwendung in Ionenmobilitätsspektrometern

Graf, Alexander 19 February 2015 (has links)
Die Ionenmobilitätsspektrometrie ermöglicht eine selektive Detektion von niedrigkonzentrierten Gasen in Luft. Darauf beruhende Analysegeräte können verhältnismäßig einfach umgesetzt werden und in vielfältigen mobilen Einsatzszenarien wie der Umweltanalytik Anwendung finden. Die vorliegende Dissertation gibt einen Überblick über die Grundlagen der Ionenmobilitätsspektrometrie und setzt die funktionellen Teilkomponenten Ionenfilter und Ionendetektor mit Mikrosystemtechniken um. Dafür werden Möglichkeiten aus dem Stand der Technik vorgestellt und eine für die Umsetzung optimale Variante identifiziert. Ein Ionenfilter basierend auf der Differenzionenmobilitätsspektrometrie zeigt diesbezüglich ein sehr geeignetes Skalierungsverhalten. Zur Integration in einen Demonstrator-Chip wird ein neuartiges Bauelementkonzept verfolgt, mit technologischen Vorversuchen untersetzt und erfolgreich in einen Gesamtherstellungsablauf überführt. Mit Hilfe von weiterführenden analytischen Untersuchungen werden spezifische Phänomene bei der elektrischen Kontaktierung der verwendeten BSOI-Wafer als Ausgangsmaterial hergeleitet und Empfehlungen zur Vermeidung gegeben. Der Funktionsnachweis der Teilkomponente Ionendetektor wird anhand von hergestellten Demonstrator-Chips und mit Hilfe eines entwickelten Versuchsaufbaus begonnen. Es werden die weiteren Schritte zum Nachweis der Gesamtfunktionalität abgeleitet und festgehalten. Auf Basis des umgesetzten Bauelement- und Technologiekonzepts und der vorliegenden Ergebnisse, wird das entwickelte und realisierte Gesamtkonzept als sehr aussichtsreich hinsichtlich der favorisierten Verwendung als Teilkomponente eines miniaturisierten Ionenmobilitätsspektrometers eingeschätzt.:1 Einleitung 1.1 Motivation und Zielstellung 1.2 Aufbau und Gliederung der Arbeit 2 Grundlagen zur Ionenmobilitätsspektrometrie 2.1 Grundprinzip der Ionenmobilitätsspektrometrie 2.2 Anwendungsfelder und Substanzen 2.3 Grundlagen der Ionenbewegung 2.4 Ionenquellen 2.4.1 Ionisation mittels radioaktiver Strahlungsquellen 2.4.2 Photoionisation 2.4.3 Weitere Ionenquelle 2.4.4 Vergleich von Ionenquellen 2.5 Ionendetektion 2.6 Bewertungskriterien Ionenmobilitätsspektrometer 3 Stand der Technik Ionenfilter 3.1 Überblick und Einteilung Ionenfilter 3.2 Zeitaufgelöste Detektion 3.3 Ortsaufgelöste Detektion 3.4 Differenz der Ionenmobilität 3.4.1 Differenzionenmobilitätsspektrometrie 3.4.2 Transversal Modulation Ionenfilter 3.5 Sonstige Filterrealisierungen 3.5.1 Ionenfilter mit Gegengasströmung 3.5.2 Travelling Wave Filter 3.6 Vergleich Ionenfilter für ein miniaturisiertes Ionenmobilitätsspektrometer 3.7 Konkretisierte Zielstellung der Arbeit 4 Konzeptionelle Vorarbeiten 4.1 Modellbildung und Dimensionierung des Ionenfilters 4.1.1 Allgemeine Lösung der Bewegungsgleichung 4.1.2 Lösung für den Spezialfall mit Rechteckanregung 4.1.3 Randbedingungen bei der Filterauslegung 4.1.4 Elektrische Simulation des Ionenfilters mit diskreten Elementen 4.1.5 Auslegung eines miniaturisierten Ionenfilters 4.2 Modellbildung und Auslegung des Ionendetektors 4.3 Ableitung eines relevanten Parameterraums 5 Voruntersuchungen und Empfehlungen zur technologischen Umsetzung 5.1 Herleitung des Bauelementkonzepts 5.1.1 Konzept 1 – Planar-Aufbau 5.1.2 Konzept 2 – Sandwich-Struktur 5.1.3 Konzept 3 – Erweiterte Tiefenstruktur 5.1.4 Ableitung des umzusetzenden Bauelementkonzepts 5.2 Konzept zur Herstellung der Ionenkanäle 5.2.1 Nasschemische Siliziumstrukturierung mit TMAH 5.2.2 Trockenchemische Siliziumstrukturierung mit DRIE 5.2.3 Durchführung und Ergebnisse des Vorversuchs 5.2.4 Schlussfolgerung und Ausblick für die Herstellung der Elektrodenkanäle 5.3 Konzept zur Realisierung der Elektrodenkontakte 5.3.1 Möglichkeiten zur Kontaktierung der Elektrodenstrukturen 5.3.2 Verfahren und Materialien für das Erzeugen von Isolationen 5.3.3 Verfahren und Materialien für das Abscheiden von Metallen 5.3.4 Besonderheiten beim Metall-Halbleiter-Kontakt 5.3.5 Ableiten eines Technologieablaufs und Durchführung eines Versuchs zur Herstellung der Rückseitenkontakte 5.3.6 Elektrische Charakterisierung der Rückseitenkontakte 5.3.7 Ausblick zur weiteren Bewertung der Rückseitenkontakte 5.4 Überblick über relevante Waferbondverfahren 5.5 Konzept für die Aufbau- und Verbindungstechnik 5.6 Integration der Vorversuche in ein erweitertes Bauelementkonzept 6 Bauelementauslegung für ein Ionenmobilitätsspektrometer 6.1 Voruntersuchungen für die Bauelementdimensionierung 6.1.1 Simulation des elektrischen Verhaltens mit einem erweiterten Ersatzschaltbild 6.1.2 Dimensionierung des Einströmbereichs und des Vorfilters 6.2 Zusammenfassung der Voruntersuchungen und Ableitung von Designvarianten 7 Technologische Umsetzung und Untersuchung der Kontaktproblematik 7.1 Umsetzung Filter- und Detektordemonstrator 7.1.1 Auswahl der Metallisierung 7.1.2 Erstellen eines detailliertern Gesamttechnologieablaufs 7.1.3 Verifikation des umgesetzten Herstellungsprozesses an den realisierten Demonstrator-Chips 7.2 Untersuchung Metall-Halbleiter-Kontakt 7.2.1 Untersuchung Metall-Halbleiter-Interface 7.2.2 Einfluss des Ausheilschritts auf das Kontaktverhalten 7.2.3 Untersuchung des Dotierungs- und Leitfähigkeitsprofils 7.2.4 Herleitung einer möglichen Ursachenkette für die Bor-Kontamination 7.2.5 Gegenprüfung der Ursachenkette und Schlussfolgerung 7.3 Zusammenfassung Technologieablauf 8 Charakterisierung der Teilkomponenten 8.1 Konzeptionelle Vorarbeiten zum Versuchsaufbau 8.1.1 Methoden zur Testgaserzeugung 8.1.2 Integration des IMS-Chips in die Gasversorgung 8.1.3 Elektronikanbindung 8.2 Versuchsaufbau und Versuchsplanung 8.2.1 Beschreibung Versuchsaufbau 8.2.2 Planung der Versuche für Bewertung Ionendetektor 8.2.3 Planung der Versuche für Bewertung Ionenfilter 8.3 Versuche und Bewertung Ionendetektor 8.3.1 Versuchsdurchführung 8.3.2 Auswertung Ionendetektor 8.4 Zusammenfassung und Ausblick der Charakterisierung 9 Zusammenfassung und Ausblick Literaturverzeichnis

Page generated in 0.0626 seconds