Return to search

The influence of p21WAF1 on cell death pathways in acute lymphoblastic leukaemia

The p53 protein is a primary mediator of apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has categorised a wild type p53 gene in the majority of childhood acute lymphoblastic leukaemia (ALL) cases, in which instance the p53 protein functions as a modulator of chemotherapy-induced cell death. In contrast, certain p53-induced proteins, such as p21WAF1, can act in an anti-apoptotic manner, and bestow resistance to chemotherapy. Previous studies of the p53 pathway in ALL have utilised cell lines and primary material. In this study a model of ALL was utilised that had previously been developed from a heterogeneous panel of patient biopsies established as xenografts in immune-deficient mice, and are adaptable for short term in vitro culture. A wild-type p53 protein response to etoposide and nutlin-3 exposure was a feature of the whole ALL xenograft panel, irrespective of clinical characteristics and disease biology. While a range of p53 target genes were induced in B-cell precursor (BCP)-ALL and T-ALL xenografts after etoposide exposure, there was negligible induction of p21WAF1 in T- ALL samples. Further work with the histone deacetylase inhibitor vorinostat facilitated p53-independent induction of p21WAF1 in BCP-ALL samples, yet failed to induce p21WAF1 in T- ALL. An association was observed between reduced p21WAF1 expression in the T-ALL samples and decreased histone H3 acetylation in the p21WAF1 promoter together with increased cytosine methylation in the first exon/intron of the p21WAF1 gene. These results suggest that p21WAF1 in T-ALL cells is subject to epigenetic modifications that cause transcriptional silencing. Defective induction of p21WAF1 in T-ALL xenografts was associated with increased sensitivity to the death-inducing effects of drugs, phosphatidylserine (PS) externalisation and caspase-3/-7 activity after drug exposure, indicating that p21WAF1 may exert an anti-apoptotic activity. As proof of principle, p21WAF1 was silenced in Nalm-6 cells by micro-RNA transduction and these cells exhibited increased sensitivity and rapid PS externalisation after drug exposure. A combination of a p21WAF1 inhibitory agent and vorinostat gave some pharmacological evidence to suggest that p21WAF1 inhibition could enhance drug efficacy. Overall, these investigations provide insight into the epigenetic regulation of p21WAF1 and demonstrate an anti-apoptotic role for p21WAF1 in childhood ALL cells.

Identiferoai:union.ndltd.org:ADTP/258734
Date January 2009
CreatorsDavies, Carwyn, Children's Cancer Institute Australia for Medical Research, UNSW
PublisherPublisher:University of New South Wales. Children's Cancer Institute Australia for Medical Research
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0023 seconds