Return to search

Investigation into the proteolytic activity in chronic wound fluid and development of a remediation strategy

Chronic ulcers are an important and costly medical issue, causing their sufferers a large amount of pain, immobility and decreased quality of life. The common pathology in these chronic wounds is often characterised by excessive proteolytic activity, leading to the degradation of both the extracellular matrix, as well as key factors critical to the ulcer's ability to heal. As matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, have been shown to have increased activity in chronic wound fluid (CWF), it was hypothesised that this specific proteolytic activity was directly related to an ulcer's chronic nature. Although previous studies have identified elevated proteases in CWF, many have reported contradictory results and therefore the precise levels and species of MMPs in CWF are poorly understood. The studies reported herein demonstrate that MMP activity is significantly elevated in CWF compared with acute wound fluid (AWF). In particular, these studies demonstrate that this proteolytic activity can be specifically attributed to MMPs and not another class of proteases present in wound healing. Furthermore, it is shown that MMP-9 is the predominant protease responsible for matrix degradation by CWF and is an indicator of the clinical status of the wound itself. Moreover, MMP-9 can be inhibited with the bisphosphonate alendronate, in the form of a sodium salt, a functionalised analogue, and also tethered to a synthetic biocompatible hydrogel compromised of aqueous poly (2-hydroxy methacrylate) PHEMA synthesised in the presence of poly(ethylene glycol) (PEG). Together, these results highlight the potential use of a tethered MMP inhibitor as an improved ulcer treatment to inhibit protease activity in the wound fluid, while still allowing MMPs to remain active in the wound bed where they perform vital roles in the activation of growth-promoting agents and immune system regulation.

Identiferoai:union.ndltd.org:ADTP/265556
Date January 2007
CreatorsRayment, Erin Alexis
PublisherQueensland University of Technology
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsCopyright Erin Alexis Rayment

Page generated in 0.0026 seconds