Return to search

Gait analysis methods to minimise soft tissue artefact and evaluate techniques to locate the hip joint centre

The purpose of this thesis was to investigate gait analysis methods used to minimise soft tissue artefact (STA) when measuring the kinematics and kinetics of human gait. STA affects all gait analysis methods and is considered to be one of the major sources of error in clinical motion analysis. A systematic review was initially performed to quantify the magnitude of STA for different areas of the lower limbs during gait analysis. Despite the high quality of the existing literature, the results of the review were inconclusive regarding the exact magnitude of STA during human gait analysis. Previously, there were no methods used consistently throughout the reviewed studies to assess STA. The primary aim of this thesis was to determine the most valid method for minimising STA during human gait analysis. / Whilst the systematic review provided equivocal results on the magnitude of STA, it was able to confirm that STA at the tibia is less than for the femur segment. As a result, the tibial segment was investigated to determine marker locations that are least susceptible to STA. Twenty unimpaired young adults were included in the study and were instrumented with 36 markers, including 10 markers on each shank segment. The markers were well spread across the tibial segment in order to assess as many locations as possible. Four markers located on the tibia were less susceptible to STA. These were the proximal and distal anterior tibial crest markers as well as the medial and lateral malleolar markers. These markers were rigid to one another thus were rigid to the underlying bone. / In order to assess the modelling methods proposed in the literature a gold standard comparison was required. A potential new gold standard method was identified as 3-D freehand ultrasound (3-DUS). This was believed to be a non-invasive and cost effective method for locating internal bony structures. A validation of the new method (3-DUS) against MRI was performed to ensure the new gold standard was a valid methodology. The two methods, 3-DUS and MRI were compared for their accuracy in determining the location of the HJC within the pelvis segment. Twenty unimpaired participants were included in this study. The participants were of variable ages and physical composition. The difference between 3-DUS and MRI determined distance between the left and right HJC was 4.0 ± 2.3mm. It was determined that the results from 3-DUS were clinically not significantly different to MRI. The results of this investigation indicated that 3-DUS could be used as a gold standard measurement for three dimensional gait analysis (3-DGA) research. / The new gold standard method was used to validate existing 3-DGA modelling methods to determine which obtained the most accurate location of the HJC. To date, the greatest clinical application for gait analysis is as a test for people with central nervous system disorders associated with spasticity, especially children with cerebral palsy (CP) (Simon 2004). For this reason, 53 patients with gait abnormalities who had been referred to the Royal Children’s Hospital gait laboratory for a 3-DGA were tested. The participant sample represented patients who were referred to the Hugh Williamson Gait Analysis Laboratory (HWGAL). This was apparent because from 2008-2009 69% of patients at HWGAL had a diagnosis of CP, of the sample included in this study, 67% had a CP diagnosis. / Patients underwent a 3-DGA in addition to a 3-DUS of their left and right femoral heads. Resultant ultrasounds were assessed for the quality of the images and 46 patients were included for data analysis. Seven different methods were investigated for the determination of the HJC and four of these were analysed in two different ways, as such there were 11 models compared to 3-DUS. The Harrington et al method obtained the most accurate and repeatable results where the 3-D location error was 14.3 ± 8.0mm. That method considerably outperformed the functional techniques that had previously been proposed in the literature. This highlighted the importance of testing research techniques in target populations. / To conclude, this thesis has identified locations on the tibia which are most rigid to the underlying bone as well as a new gold standard measurement tool suitable for use in 3-D gait analysis research. The thesis has also demonstrated the validity of using functional methods for determining the HJC in pathological populations. Limitations of previous research were identified, including a lack of translation of research findings into clinical practice. Future work following on from this thesis should aim to address this issue.

Identiferoai:union.ndltd.org:ADTP/284237
Date January 2010
CreatorsPeters, Alana Victoria
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsRestricted Access: Abstract and Citation Only Available

Page generated in 0.0022 seconds