Return to search

Modeling the Transient Response of a Thermosyphon

Thermosyphon transient operation was numerically modeled. The numerical model presented in this work overcame the limitations of previous studies by including transient conduction in the vessel wall, shear stress between the rising vapor and the falling film in the thermosyphon, the influence of the mass in the liquid pool in the evaporator, and by using a more refined and accurate numerical grid. Unique to this model was the accounting for temporal changes in the effective length of the vapor space due to the expanding and contracting of non-condensable gases in the vapor space. The model assumed quasi-steady one-dimensional vapor flow, transient one-dimensional flow in the falling liquid film, and transient behavior in the liquid pool in the evaporator. The model also assumed transient two-dimensional conduction in the thermosyphon wall. Using fundamental principles, the governing equations used in the numerical model were developed and then written in finite difference form. The finite difference forms of the governing equations were integrated using an explicit scheme. A sensitivity study was performed and found that the numerical model was accurate to 4%. An experiment was also conducted to validate the numerical model. The experiment used three distinct transient heat loads to simulate gradual, moderate and sharp increases in temperature. The uncertainty of the experiment was shown to be 2.3%. The temperatures from the numerical model were then compared to those measured during the physical experiment to determine the validity of the numerical model. The model was further exercised to develop a useful engineering relationship that can be used to predict the transient performance of a thermosyphon.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1108
Date26 November 2003
CreatorsStorey, James Kirk
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0018 seconds