Return to search

Finite Element Modeling of Shallowly Embedded Connections to Characterize Rotational Stiffness

Finite element models were created in Abaqus 6.14 to characterize the rotational stiffness of shallowly embedded column-foundation connections. Scripts were programmed to automate the model generation process and allow study of multiple independent variables, including embedment length, column size, baseplate geometry, concrete modulus, column orientation, cantilever height, and applied axial load. Three different connection types were investigated: a tied or one part model; a contact-based model; and a cohesive-zone based model. Cohesive-zone modeling was found to give the most accurate results. Agreement with previous experimental data was obtained to within 27%. Baseplate geometry was found to affect connection stiffness significantly, especially at lower embedment depths. The connection rotational stiffness was found to vary only slightly with cantilever height for typical column heights. Results from varying other parameters are also discussed.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6865
Date01 May 2016
CreatorsJones, Trevor Alexander
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Theses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0021 seconds