Return to search

Coherent and ballistic transport in InGaAs and Bi mesoscopic devices

In ‘clean' confined conductors (the so-called mesoscopic systems), the electronic phase and momentum can be preserved over very long distances compared to the system dimensions. This gives rise to peculiar transport properties, bearing signatures of electron interferences, ballistic electron trajectories, electron-electron interactions, regular-chaotic electron dynamics and (in some cases) spin-orbit coupling. Examples of such effects are the Universal Conductance Fluctuations (UCFs) and the Weak Localization observed in the low-temperature magnetoconductance of many confined electronic systems. Of central importance, the electronic phase coherence time and the spin-orbit coupling time determine the amplitude of these quantum effects.
In the first part of this thesis, we use UCFs to extract these characteristic timescales in open ballistic quantum dots (QDs) fabricated from InGaAs heterostructures. We observe an intrinsic saturation of the coherence time at low temperature in the InGaAs QDs. The origin of this phenomenon has been intensely debated during the last decade. Based on our observations and previous experimental data in QDs, we propose an explanation: the dwell time becomes the limiting factor for electron interferences in QDs at low temperature.
Then, we report on magnetoconductance measurements in a bismuth ballistic nano-cavity. The cavity is found to be zero-dimensional for phase coherent processes at low temperature. We evidence an anomalous reduction of the phase coherence time in the cavity with respect to data obtained in thin Bi films, while the spin-orbit coupling time is similar in both systems.
Finally, we examine the current-voltage characteristics of asymmetric InGaAs nano-junctions in the nonlinear regime. We observe a new tunable rectification effect, whose amplitude and sign are governed by the conductances of the junctions' channels. We show that the effect is ballistic and exhibits new features with respect to predictions of available models.

Identiferoai:union.ndltd.org:BICfB/oai:ucl.ac.be:ETDUCL:BelnUcetd-01042005-112909
Date06 January 2005
CreatorsHackens, Benoit
PublisherUniversite catholique de Louvain
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-01042005-112909/
Rightsunrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.1491 seconds