• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Linkage Between Local Cross-frequency Coupling and Communication Through Coherence in an in Vitro Model of Human Neocortical Oscillatory Activity

McGinn, Ryan J. 05 December 2013 (has links)
The dynamical underpinnings of complex computation and information transmission within the brain, while of great interest to the neuroscience community at large, remain poorly understood. One of the striking manifestations of neuronal population activity is that of rhythmic oscillations in the local field potential. It is thought that distinct patterns of these oscillations such as cross-frequency coupling within a given spatial location and coherence between disparate brain regions may represent neuronal computation and communication, respectively. Here we show such dynamics within a human temporal neocortical in vitro model. In specific, we show theta-gamma cross frequency coupling in deep and superficial layers, phase coherence between layers at theta frequencies, and a measure of communication (phase dependent power correlations) between layers at theta frequency. Additionally, we show a novel correlation between communication across layers and cross frequency coupling within layers, demonstrating a dynamic link between local computation and intralaminar communication.
2

Coherent and ballistic transport in InGaAs and Bi mesoscopic devices

Hackens, Benoit 06 January 2005 (has links)
In ‘clean' confined conductors (the so-called mesoscopic systems), the electronic phase and momentum can be preserved over very long distances compared to the system dimensions. This gives rise to peculiar transport properties, bearing signatures of electron interferences, ballistic electron trajectories, electron-electron interactions, regular-chaotic electron dynamics and (in some cases) spin-orbit coupling. Examples of such effects are the Universal Conductance Fluctuations (UCFs) and the Weak Localization observed in the low-temperature magnetoconductance of many confined electronic systems. Of central importance, the electronic phase coherence time and the spin-orbit coupling time determine the amplitude of these quantum effects. In the first part of this thesis, we use UCFs to extract these characteristic timescales in open ballistic quantum dots (QDs) fabricated from InGaAs heterostructures. We observe an intrinsic saturation of the coherence time at low temperature in the InGaAs QDs. The origin of this phenomenon has been intensely debated during the last decade. Based on our observations and previous experimental data in QDs, we propose an explanation: the dwell time becomes the limiting factor for electron interferences in QDs at low temperature. Then, we report on magnetoconductance measurements in a bismuth ballistic nano-cavity. The cavity is found to be zero-dimensional for phase coherent processes at low temperature. We evidence an anomalous reduction of the phase coherence time in the cavity with respect to data obtained in thin Bi films, while the spin-orbit coupling time is similar in both systems. Finally, we examine the current-voltage characteristics of asymmetric InGaAs nano-junctions in the nonlinear regime. We observe a new tunable rectification effect, whose amplitude and sign are governed by the conductances of the junctions' channels. We show that the effect is ballistic and exhibits new features with respect to predictions of available models.
3

Dynamic Linkage Between Local Cross-frequency Coupling and Communication Through Coherence in an in Vitro Model of Human Neocortical Oscillatory Activity

McGinn, Ryan J. 05 December 2013 (has links)
The dynamical underpinnings of complex computation and information transmission within the brain, while of great interest to the neuroscience community at large, remain poorly understood. One of the striking manifestations of neuronal population activity is that of rhythmic oscillations in the local field potential. It is thought that distinct patterns of these oscillations such as cross-frequency coupling within a given spatial location and coherence between disparate brain regions may represent neuronal computation and communication, respectively. Here we show such dynamics within a human temporal neocortical in vitro model. In specific, we show theta-gamma cross frequency coupling in deep and superficial layers, phase coherence between layers at theta frequencies, and a measure of communication (phase dependent power correlations) between layers at theta frequency. Additionally, we show a novel correlation between communication across layers and cross frequency coupling within layers, demonstrating a dynamic link between local computation and intralaminar communication.
4

Parallel field-induced universal conductance fluctuations in open quantum dots

Gustin, Cédric 15 March 2005 (has links)
Open quantum dots (OQDs) are now commonly used as an experimental tool for the investigation of a particular regime of quantum transport where the electron dynamics is both ballistic and coherent. In particular, the Universal Conductance Fluctuations (UCFs), observed in ballistic quantum dots, arise from the complex quantum interferences occurring between electron trajectories that bounce multiple times against the dot walls before escaping through its leads. Central to quantum interference phenomena is the presence of a magnetic field B that breaks the time-reversal symmetry and changes the phase experienced by electrons in the dot. OQDs are typically patterned on top of two-dimensional electron gases (2DEGs). Interestingly, when confined to wide GaAs quantum wells (QWs), 2DEGs are known to exhibit a rich physics arising from the interplay of a strong in-plane magnetic field, multiple subband occupation, and the finite thickness of the electronic wavefunction. In this thesis, we use 2DEGs, confined to wide (WQW) and narrow (NQW) quantum wells with one and two occupied subbands at B = 0 T, respectively, to study the parallel field-induced transport in open quantum dots as a function of the well width and the tilt angle of B with respect to the electron gas. Both the WQW and NQW dots feature a rich spectrum of UCFs at intermediate tilt angles and, quite unexpectedly, under a strictly parallel B. Combined with the observation, in the case of the WQW dot, of a reduction in UCFs amplitude at large parallel B, our data indicates that the finite thickness of the electron layer and the orbital effect are responsible for the in-plane field-induced UCFs. In the second part of this work, we observe a saturation of the UCFs spectral distribution, expressed in terms of an effective tilt angle, as B approaches a strictly parallel configuration, along with the persistence of a limited number of frequency components in the case of the narrow quantum well dot. It is found that the saturation angle strongly depends on the width of the 2DEG confining well. Using the results of self-consistent Poisson-Schrödinger simulations, the magnetoconductance is rescaled as a function of the Fermi level E_F in the 2DEG. A power spectrum analysis of the parallel B UCFs in energy space and its good agreement with theoretical predictions suggest that such a B to E_F mapping is indeed relevant for the interpretation of parallel B-induced UCFs
5

Electron transport in micro to nanoscale solid state networks

Fairbanks, Matthew Stetson, 1981- 03 1900 (has links)
xvi, 116 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation focuses on low-dimensional electron transport phenomena in devices ranging from semiconductor electron 'billiards' to semimetal atomic clusters to gold nanoparticles. In each material system, the goal of this research is to understand how carrier transport occurs when many elements act in concert. In the semiconductor electron billiards, magnetoconductance fluctuations, the result of electron quantum interference within the device, are used as a probe of electron transport through arrays of one, two, and three connected billiards. By combining two established analysis techniques, this research demonstrates a novel method for determining the quantum energy level spacing in each of the arrays. That information in turn shows the extent (and limits) of the phase-coherent electron wavefunction in each of the devices. The use of the following two material systems, the semimetal atomic clusters and the gold nanoparticles, is inspired by the electron billiard results. First, the output of the simple, rectangular electron billiards, the magnetoconductance fluctuations, is quite generally found to be fractal. This research addresses the question of what output one might expect from a device with manifestly fractal geometry by simulating the electrical response of fractal resistor networks and by outlining a method to implement such devices in fractal aggregates of semimetal atomic clusters. Second, in gold nanoparticle arrays, the number of array elements can increase by orders of magnitude over the billiard arrays, all with the potential to stay in a similar, phase-coherent transport regime. The last portion of this dissertation details the fabrication of these nanoparticle-based devices and their electrical characteristics, which exhibit strong evidence for electron transport in the Coulomb-blockade regime. A sketch for further 'off-blockade' experiments to realize magnetoconductance fluctuations, i.e. phase-coherent electron phenomena, is presented. / Committee in charge: Jens Noeckel, Chairperson, Physics; Richard Taylor, Member, Physics; Heiner Linke, Member, Physics; David Strom, Member, Physics; James Hutchison, Outside Member, Chemistry
6

ULF Waves in the Magnetosphere and their Association with Magnetopause Instabilities and Oscillations

Nedie, Abiyu Z Unknown Date
No description available.
7

Local Phase Coherence Measurement for Image Analysis and Processing

Hassen, Rania Khairy Mohammed January 2013 (has links)
The ability of humans to perceive significant pattern and structure of an image is something which humans take for granted. We can recognize objects and patterns independent of changes in image contrast and illumination. In the past decades, it has been widely recognized in both biology and computer vision that phase contains critical information in characterizing the structures in images. Despite the importance of local phase information and its significant success in many computer vision and image processing applications, the coherence behavior of local phases at scale-space is not well understood. This thesis concentrates on developing an invariant image representation method based on local phase information. In particular, considerable effort is devoted to study the coherence relationship between local phases at different scales in the vicinity of image features and to develop robust methods to measure the strength of this relationship. A computational framework that computes local phase coherence (LPC) intensity with arbitrary selections in the number of coefficients, scales, as well as the scale ratios between them has been developed. Particularly, we formulate local phase prediction as an optimization problem, where the objective function computes the closeness between true local phase and the predicted phase by LPC. The proposed framework not only facilitates flexible and reliable computation of LPC, but also broadens the potentials of LPC in many applications. We demonstrate the potentials of LPC in a number of image processing applications. Firstly, we have developed a novel sharpness assessment algorithm, identified as LPC-Sharpness Index (LPC-SI), without referencing the original image. LPC-SI is tested using four subject-rated publicly-available image databases, which demonstrates competitive performance when compared with state-of-the-art algorithms. Secondly, a new fusion quality assessment algorithm has been developed to objectively assess the performance of existing fusion algorithms. Validations over our subject-rated multi-exposure multi-focus image database show good correlations between subjective ranking score and the proposed image fusion quality index. Thirdly, the invariant properties of LPC measure have been employed to solve image registration problem where inconsistency in intensity or contrast patterns are the major challenges. LPC map has been utilized to estimate image plane transformation by maximizing weighted mutual information objective function over a range of possible transformations. Finally, the disruption of phase coherence due to blurring process is employed in a multi-focus image fusion algorithm. The algorithm utilizes two activity measures, LPC as sharpness activity measure along with local energy as contrast activity measure. We show that combining these two activity measures result in notable performance improvement in achieving both maximal contrast and maximal sharpness simultaneously at each spatial location.
8

Local Phase Coherence Measurement for Image Analysis and Processing

Hassen, Rania Khairy Mohammed January 2013 (has links)
The ability of humans to perceive significant pattern and structure of an image is something which humans take for granted. We can recognize objects and patterns independent of changes in image contrast and illumination. In the past decades, it has been widely recognized in both biology and computer vision that phase contains critical information in characterizing the structures in images. Despite the importance of local phase information and its significant success in many computer vision and image processing applications, the coherence behavior of local phases at scale-space is not well understood. This thesis concentrates on developing an invariant image representation method based on local phase information. In particular, considerable effort is devoted to study the coherence relationship between local phases at different scales in the vicinity of image features and to develop robust methods to measure the strength of this relationship. A computational framework that computes local phase coherence (LPC) intensity with arbitrary selections in the number of coefficients, scales, as well as the scale ratios between them has been developed. Particularly, we formulate local phase prediction as an optimization problem, where the objective function computes the closeness between true local phase and the predicted phase by LPC. The proposed framework not only facilitates flexible and reliable computation of LPC, but also broadens the potentials of LPC in many applications. We demonstrate the potentials of LPC in a number of image processing applications. Firstly, we have developed a novel sharpness assessment algorithm, identified as LPC-Sharpness Index (LPC-SI), without referencing the original image. LPC-SI is tested using four subject-rated publicly-available image databases, which demonstrates competitive performance when compared with state-of-the-art algorithms. Secondly, a new fusion quality assessment algorithm has been developed to objectively assess the performance of existing fusion algorithms. Validations over our subject-rated multi-exposure multi-focus image database show good correlations between subjective ranking score and the proposed image fusion quality index. Thirdly, the invariant properties of LPC measure have been employed to solve image registration problem where inconsistency in intensity or contrast patterns are the major challenges. LPC map has been utilized to estimate image plane transformation by maximizing weighted mutual information objective function over a range of possible transformations. Finally, the disruption of phase coherence due to blurring process is employed in a multi-focus image fusion algorithm. The algorithm utilizes two activity measures, LPC as sharpness activity measure along with local energy as contrast activity measure. We show that combining these two activity measures result in notable performance improvement in achieving both maximal contrast and maximal sharpness simultaneously at each spatial location.
9

Cohérence et Superfluidité de gaz de Bose en dimension réduite : des pièges harmoniques aux fluides uniformes / Coherence and superfluidity of Bose gases in reduced dimensions : from harmonic traps to uniform fluids

Chomaz, Lauriane 10 November 2014 (has links)
La dimensionnalité d’un système affecte fortement ses propriétés physiques ; les transitions de phasequi s’y déroulent ainsi que le type d’ordre qui y apparaît dépendent de la dimension. Dans les systèmesde basse dimension, la cohérence s’avère plus difficile à établir car les fluctuations thermiques etquantiques y jouent un rôle plus important. Le fluide de Bose à deux dimensions est particulièrementintéressant car, même si un ordre total est exclu, un ordre résiduel à « quasi-longue » portée s’établit àbasse température. Deux ingrédients ont un effet significatif sur l’état du système : (i) la taille finie d’unsystème réel permet de retrouver une occupation macroscopique d’un état à une particule ; (ii) les interactionsentre particules conduisent à l’apparition d’un type non-conventionnel de transition de phasevers un état superfluide.Dans cette thèse, nous présentons une étude expérimentale du gaz de Bose bidimensionnel (2D) utilisantdeux types de paysages énergétiques pour piéger nos atomes. Dans la première partie, nous utilisonsla dépendance spatiale de certaines propriétés locales d’un gaz inhomogène pour caractériser l’étatdu système homogène équivalent. Nous extrayons son équation d’état des profils de densité et noustestons son comportement superfluide en mesurant le chauffage induit par le mouvement d’une perturbationlocale. Dans la deuxième partie, nous observons et caractérisons l’émergence d’une cohérencede phase étendue dans un gaz 2D homogène, en particulier via le passage de trois dimensions à deux(croisement dimensionnel). Nous étudions l’établissement dynamique de la cohérence par un passagerapide du croisement dimensionnel et nous observons des défauts topologiques dans l’état superfluidefinal. Nous comparons nos résultats avec les prédictions du mécanisme de Kibble–Zurek. / The dimensionality of a system strongly affects its physical properties; the phase transitions that takeplace and the type of order that arises depend on the dimension. In low dimensional systems phasecoherence proves more difficult to achieve as both thermal and quantum fluctuations play a strongerrole. The two-dimensional Bose fluid is of particular interest as even if full order is precluded, a residual"quasi-long" range order arises at low temperatures. Then two ingredients have a significant effecton the state of the system: (i) the finite size of a real system enables one to recover of a macroscopicoccupation of a single-particle state; (ii) the interactions between particles lead to the emergence of anon-conventional type of phase transition toward a superfluid state.In this thesis, we present an experimental study of the two-dimensional (2D) Bose gas using two differentenergy landscapes to trap our atoms. In the first part, we use the spatial dependence of somelocal properties of an inhomogeneous gas to characterize the state of the equivalent homogeneous system.We extract its equation of state with a high accuracy from the gas density profiles and test itssuperfluid behavior by measuring the heating induced by a moving local perturbation. In the secondpart, we observe and characterize the emergence of an extended phase coherence in a 2D homogeneousgas in particular via a 3D-to-2D dimensional crossover. We investigate the dynamical establishment ofthe coherence via a rapid crossing of the dimensional crossover and observe topological defects in thefinal superfluid state. We compare our findings with the predictions for the Kibble–Zurek mechanism.
10

Experimental Measurements by Antilocalization of the Interactions between Two-Dimensional Electron Systems and Magnetic Surface Species

Zhang, Yao 18 June 2014 (has links)
Low-temperature weak-localization (WL) and antilocalization (AL) magnetotransport measurements are sensitive to electron interference, and thus can be used as a probe of quantum states. The spin-dependent interactions between controllable surface magnetism and itinerant electrons in a non-magnetic host provide insight for spin-based technologies, magnetic data storage and quantum information processing. This dissertation studies two different host systems, an In$_{0.53}$Ga$_{0.47}$As quantum well at a distance from the surface of a heterostructure, and an accumulation layer on an InAs surface. Both the systems are two-dimensional electron systems (2DESs), and possess prominent Rashba spin-orbit interaction caused by structural inversion asymmetry, which meets the prerequisites for AL. The surface local moments influence the surrounding electrons in two ways, increasing their spin-orbit scattering, and inducing magnetic spin-flip scattering, which carries information about magnetic interactions. The two effects modify the AL signals in opposing directions: the spin-flip scattering of electrons shrinks the signal, and requires a close proximity to the species, whereas the increase of spin-orbit scattering broadens and increases the signal. Accordingly, we only observe an increase in spin-orbit scattering in the study of the interactions between ferromagnetic Co$_{0.6}$Fe$_{0.4}$ nanopillars and the relatively distant InGaAs quantum well. With these CoFe nanopillars, a decrease in spin decoherence time is observed, attributed to the spatially varying magnetic field from the local moments. A good agreement between the data and a theoretical calculation suggests that the CoFe nanopillars also generate an appreciable average magnetic field normal to the surface, of value $\sim$ 35 G. We also performed a series of comparative AL measurements to experimentally investigate the interactions and spin-exchange between InAs surface accumulation electrons and local magnetic moments of rare earth ions Sm$^{3+}$, Gd$^{3+}$, Ho$^{3+}$, of transition metal ions Ni$^{2+}$, Co$^{2+}$, and Fe$^{3+}$, and of Ni$^{2+}$-, Co$^{2+}$-, and Fe$^{3+}$-phthalocyanines deposited on the surface. The deposited species generate magnetic scattering with magnitude dependent on their electron configurations and effective moments. Particularly for Fe$^{3+}$, the significant spin-flip scattering due to the outermost 3d shell and the fairly high magnetic moments modifies the AL signal into a WL signal. Experiments indicate a temperature-independent magnetic spin-flip scattering for most of the species except for Ho$^{3+}$ and Co$^{2+}$. Ho$^{3+}$ yields electron spin-flip rates proportional to the square root of temperature, resulting from transitions between closely spaced energy levels of spin-orbit multiplets. In the case of Co$^{2+}$, either a spin crossover or a spin-glass system forms, and hence spin-flip rates transit between two saturation regions as temperature varies. Concerning the spin-orbit scattering rate, we observe an increase for all the species, and the increase is correlated with the effective electric fields produced by the species. In both 2DESs, the inelastic time is inversely proportional to temperature, consistent with phase decoherence via the Nyquist mechanism. Our method provides a controlled way to probe the quantum spin interactions of 2DESs, either in a quantum well, or on the surface of InAs. / Ph. D.

Page generated in 0.0676 seconds