• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum transport in mesoscopic systems of Bi and other strongly spin-orbit coupled materials

Rudolph, Martin 03 May 2013 (has links)
Systems with strong spin-orbit coupling are of particular interest in solid state physics as an avenue for observing and manipulating spin physics using standard electrical techniques. This dissertation focuses on the characteristics of elemental bismuth (Bi), which exhibits some of the strongest intrinsic spin-orbit coupling of all elements, and InSb, which exhibits some of the strongest intrinsic spin-orbit coupling of all compound semiconductors. The experiments performed study the quantum transport signatures of nano- and micron-scale lithographically defined devices as well as spin-orbit coupled material/ferromagnet interfaces. All Bi structures are fabricated from Bi thin "films, and hence a detailed analysis of<br />the characteristics of Bi "film growth by thermal evaporation is provided. Morphologically and electrically high quality "films are grown using a two stage deposition procedure. The phase and spin coherence of Bi geometries constrained in one, two, and three dimensions are systematically studied by analysis of the weak antilocalization transport signature, a quantum interference phenomenon sensitive to spin-orbit coupling. The "findings indicate that the phase coherence scales proportionally to the limiting dimension of the structure for sizes less than 500 nm. Specifically, in Bi wires, the phase coherence length is approximately as long as the wire width. Dephasing due to quantum confinement e"ffects limit the phase coherence in small Bi structures, impairing the observation of controlled interference phenomena in nano-scale Bi rings. The spin coherence length is independent of dimensional constraint by the film thickness, but increases significantly as the lateral dimensions, such as wire width, are constrained. This is a consequence of the quantum transport contribution from the strongly spin-orbit coupled Bi(001) surface state. To probe the Bi surface state further, Bi/CoFe junctions are fabricated. The anisotropic magnetoresistance of the CoFe is modifi"ed when carriers tunnel into the CoFe from Bi, possibly due to a spin dependent tunneling process or an interaction between the spin polarized density of states in CoFe and the anisotropic spin-orbit coupled density of states in Bi. InSb/CoFe junctions are studied as InSb "films are a simpler spin-orbit coupled system compared to Bi "films. For temperatures below 3.5 K, a large, symmetric, and abrupt negative magnetoresistance is observed. The low-"field high resistance state has similar temperature and magnetic "field dependences as the superconducting phase, but a superconducting component in the device measurements seems absent. A differential conductance measurement of the InSb/CoFe interface during spin injection indicates a quasiparticle gap present at the Fermi energy, coinciding with the large magnetoresistance. / Ph. D.
2

Perpendicular And Parallel Field Magnetoresistance In Molecular Beam Epitaxy Grown Bi2Te3

Dey, Rik 18 September 2014 (has links)
The topological insulator Bi2Te3 has been grown on Si(111)-(7 × 7) surface by molecular beam epitaxy. Reflection high energy electron diffraction, in situ scanning tunnelling microscopy, x-ray photoelectron spectroscopy and ex situ x-ray diffraction studies have been performed to analyze the quality of the growth. These analyses suggest a very good layer-by-layer epitaxial growth of Bi2Te3 on the atomically at Si surface. The magnetoresistance of the samples has been studied with magnetic field perpendicular and parallel to the sample surface, up to 9 T, over a temperature range of 2 K to 20 K. A sharp dip at low fields (0 T - 1 T) and near-linear behavior for high fields (> 4 T) have been observed in the perpendicular field magnetoresistance. The low field dip is due to weak antilocalization that agrees well with the simplified Hikami-Larkin-Nagaoka model. It has been demonstrated that both the low field dip and the high field near-linear behavior can be explained by the original Hikami-Larkin-Nagaoka formula alone in a system with strong spin-orbit coupling. From the fitting of the perpendicular field magnetoresistance the phase coherence length, the mean free path and the spin-orbit relaxation time have been estimated. The phase coherence length shows power law dependence with temperature indicating two dimensional nature of the transport. The power law also suggests electron electron interaction as the prominent dephasing mechanism. The out-of-plane spin-orbit relaxation time is determined to be small and the in-plane spin-orbit relaxation time is found to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters is useful for topological insulator based magneto electric device applications. It also has been shown that the strong spin-orbit coupling suppresses the Zeeman contribution in perpendicular field magnetoresistance. The logarithmic divergence of perpendicular field magnetoresistance with temperature for low temperature range (2 K - 20 K) at high fields shows the presence of Coulomb interaction in the spin singlet channel. For magnetoresistance with the field parallel to the sample surface, the observed magnetoresistance has parabolic dependence for small fields (0 T - 0.6 T) and logarithmic dependence for large fields (> 3 T), which is due to the Zeeman effect. It is found that the data are inconsistent with only the Maekawa and Fukuyama theory of non interacting electrons with Zeeman contributions to the transport, but are consistent with theory if one also takes into account the electron electron interaction and the Zeeman splitting term in the electron electron interaction theory of Lee and Ramakrishnan. The Zeeman g-factor and the strength of Coulomb scattering due to electron electron interaction have been estimated from fitting of the parallel field magnetoresistance. The magnetoresistance also shows anisotropy with respect to the field directions. The angle dependent anisotropic magnetoresistance can be fitted well by the original HLN theory alone. The anisotropy can have potential application in anisotropic magnetic sensors. / text
3

Spin States in Bismuth and Its Surfaces: Hyperfine Interaction

Jiang, Zijian 07 January 2021 (has links)
The hyperfine interaction between carrier spins and nuclear spins is an important component in exploring spin-dependent properties in materials with strong spin orbit interaction.However hyperfine interaction has been less studied in bismuth (Bi), a heavy element exhibiting a strong Rashba-like spin-orbit interaction in its two-dimensional surface states due to the broken spatial inversion symmetry. In this dissertation we experimentally explore the carrier spin polarization due to transport under strong spin-orbit interaction and the nuclear polarization resulting from the relatively unexplored hyperfine interaction on Bi(111) films.The carrier and nuclear spin polarizations are expected to dynamically interact, a topic with ramifications to other materials where surface states with noteworthy properties play a role.To achieve this goal, an optimized van der Waals epitaxy growth technique for Bi(111) on mica substrates was developed and used, resulting in flat Bi surfaces with large grain sizes and a layered step height of 0.39±0.015 nm, corresponding to one Bi(111) bilayer height. A comparison between Bi(111) films grown on three different substrates (mica, InSb(111)B, and Si(111)) is discussed, for which scanning electron microscopy and atomic force microscopy are applied to obtain the structural and morphological characteristics on the film surface. Magnetotransport measurements are carried out to extract the transport properties of theBi(111) films. Using the high quality Bi(111) film deposited on mica, we develop quantum magnetotransport techniques as delicate tools to study hyperfine interaction. The approach is based on measuring quantum corrections to the conductivity due to weak antilocalization, which depend on the coherence of the spin state of the carriers. The carrier spin polarization is generated by a strong DC current in the Bi(111) surface states (here called the Edelstein effect), which then induces dynamic nuclear polarization by hyperfine interaction. Quantum transport antilocalization measurements in the Bi(111) thin-films grown on mica indicate a suppression of antilocalization by the in-plane Overhauser field from the nuclear polarization, and allow for the quantification of the Overhauser field, which is shown to depend on both polarization duration and the DC current magnitude. Various delay times between the polarization and the measurement result in an exponential decay of the Overhauser field, driven by relaxation time T1. We observe that in the Bi surface states, the appreciable electron density and strong spin-orbit interaction allow for dynamic nuclear polarization in the absence of an external magnetic field. / Doctor of Philosophy / This dissertation focuses on the heavy element bismuth (Bi), a semimetal with strong spin-orbit interaction at its two-dimensional surface. Given the challenge to grow high qualityBi(111) films, we present an optimized van der Waals epitaxy technique to grow Bi(111)films on mica substrates, which show a flat surface with large grain sizes and a layered step height of 0.391±0.015 nm, corresponding to one Bi(111) bilayer height. To demonstrate the high quality of the Bi(111) surface, a comparison of surface morphology was conducted among Bi(111) films deposited on three different substrates (mica, Si(111), and InSb(111)B),along with a comparison between their electronic transport properties. By applying a DC current on the high quality Bi(111) film on mica, a carrier spin polarization is established via mainly what we here call the Edelstein effect, which then induces dynamic nuclear polarization by hyperfine interaction and generates a non-equilibrium nuclear spin polarization without externally applied magnetic field. We quantified the Overhauser field from the nuclear polarization all-electrically by conducting quantum transport antilocalization experiments, which showed a suppression of antilocalization by the in-plane Overhauser field.Comparative measurements indicated that the magnitude of the Overhauser field depends onthe spin-polarizing DC current magnitude and the polarization duration. The experiments also show that antilocalization forms a sensitive probe for hyperfine interaction and nuclear polarization.
4

Spin-orbit or Aharonov-Casher edge states in semiconductor systems

Xu, Lingling 21 August 2015 (has links)
We present studies of edge states induced by the Aharonov-Casher vector potential or Rashba-type spin-orbit interaction using quantum transport in InGaAs/InAlAs herterostructures. The Aharonov-Casher effect is electromagnetically dual to the Aharonov-Bohm effect and is predicted to lead to edge states in a parabolic confinement at two-dimensional sample edges. As a narrow gap material, InGaAs has a low effective mass, high mobility, and strong spin-orbit interaction, which indicate that it can be used as a good material to detect the Aharonov-Casher effect or SOI interaction. Using InGaAs, we measured the magnetoresistance in a quantum antidot in narrow short channels in a tilted magnetic field. The fine structure (mT spacing) observed in the magnetoresistance indicate a probable energy spacing between AC edge states. We also fabricated side-gate channel structures in InGaAs/InAlAs quantum wells and investigated the values of the Rashba spin-orbit coupling constant α using the weak antilocalization analysis as a function of the side-gate voltage. We take the effect of the finite width into account and find the corrected values. With the simulation of electric fields in the wide channel and narrow channel, we found that the electric field components can be changed using side-gate voltages. While our results do not indicate which electric field component is responsible, the data indicate that the deduced spin-orbit strength values in a narrow channel are tunable by the side-gate voltage. / Ph. D.
5

Experimental Measurements by Antilocalization of the Interactions between Two-Dimensional Electron Systems and Magnetic Surface Species

Zhang, Yao 18 June 2014 (has links)
Low-temperature weak-localization (WL) and antilocalization (AL) magnetotransport measurements are sensitive to electron interference, and thus can be used as a probe of quantum states. The spin-dependent interactions between controllable surface magnetism and itinerant electrons in a non-magnetic host provide insight for spin-based technologies, magnetic data storage and quantum information processing. This dissertation studies two different host systems, an In$_{0.53}$Ga$_{0.47}$As quantum well at a distance from the surface of a heterostructure, and an accumulation layer on an InAs surface. Both the systems are two-dimensional electron systems (2DESs), and possess prominent Rashba spin-orbit interaction caused by structural inversion asymmetry, which meets the prerequisites for AL. The surface local moments influence the surrounding electrons in two ways, increasing their spin-orbit scattering, and inducing magnetic spin-flip scattering, which carries information about magnetic interactions. The two effects modify the AL signals in opposing directions: the spin-flip scattering of electrons shrinks the signal, and requires a close proximity to the species, whereas the increase of spin-orbit scattering broadens and increases the signal. Accordingly, we only observe an increase in spin-orbit scattering in the study of the interactions between ferromagnetic Co$_{0.6}$Fe$_{0.4}$ nanopillars and the relatively distant InGaAs quantum well. With these CoFe nanopillars, a decrease in spin decoherence time is observed, attributed to the spatially varying magnetic field from the local moments. A good agreement between the data and a theoretical calculation suggests that the CoFe nanopillars also generate an appreciable average magnetic field normal to the surface, of value $\sim$ 35 G. We also performed a series of comparative AL measurements to experimentally investigate the interactions and spin-exchange between InAs surface accumulation electrons and local magnetic moments of rare earth ions Sm$^{3+}$, Gd$^{3+}$, Ho$^{3+}$, of transition metal ions Ni$^{2+}$, Co$^{2+}$, and Fe$^{3+}$, and of Ni$^{2+}$-, Co$^{2+}$-, and Fe$^{3+}$-phthalocyanines deposited on the surface. The deposited species generate magnetic scattering with magnitude dependent on their electron configurations and effective moments. Particularly for Fe$^{3+}$, the significant spin-flip scattering due to the outermost 3d shell and the fairly high magnetic moments modifies the AL signal into a WL signal. Experiments indicate a temperature-independent magnetic spin-flip scattering for most of the species except for Ho$^{3+}$ and Co$^{2+}$. Ho$^{3+}$ yields electron spin-flip rates proportional to the square root of temperature, resulting from transitions between closely spaced energy levels of spin-orbit multiplets. In the case of Co$^{2+}$, either a spin crossover or a spin-glass system forms, and hence spin-flip rates transit between two saturation regions as temperature varies. Concerning the spin-orbit scattering rate, we observe an increase for all the species, and the increase is correlated with the effective electric fields produced by the species. In both 2DESs, the inelastic time is inversely proportional to temperature, consistent with phase decoherence via the Nyquist mechanism. Our method provides a controlled way to probe the quantum spin interactions of 2DESs, either in a quantum well, or on the surface of InAs. / Ph. D.

Page generated in 0.1011 seconds