Return to search

Leveraging 1,2-Azaborine's Distinct Electronic Structure to Access New Building Blocks:

Thesis advisor: Shih-Yuan Liu / Described herein are three projects that derive from in-depth studies of the distinct electronic structure of monocyclic 1,2-dihydro-1,2-azaborine (heretofore referred to as simply 1,2-azaborine). In the first chapter, the first comprehensive review of the late-stage functionalization methods available for 1,2-azaborines as well as their bicyclic and polycyclic (BN-PAH) counterparts is presented. In the second chapter, the development of a general method for both C4 and C5 functionalization based on the building block approach is described. The distinct electronic structure of 1,2-azaborine enables the chemical separation and further functionalization of C4 and C5 borylated isomers. In the second part, the C4, C5, and C6 isomers of BN-styrene analogues were prepared using the newly developed azaborine building blocks. The corresponding polymers were synthesized and extensively characterized in order to compare the effects of the BN-bond positioning relative to the polymer chain. In the fourth and final chapter, 1,2-azaborine-containing phosphine ligands featuring a P-B bond are synthesized. A comparative electronic structure analysis is performed between the BN-phosphine ligands and their direct all-carbon counterparts. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_108607
Date January 2019
CreatorsMcConnell, Cameron Reed
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Page generated in 0.0015 seconds