Return to search

Optical Confinement in the Nanocoax:

Thesis advisor: Michael J. Naughton / The nanoscale coaxial cable (nanocoax) has demonstrated sub-diffraction-limited optical confinement in the visible and the near infrared, with the theoretical potential for confinement to scales arbitrarily smaller than the free space wavelength. In the first part of this thesis, I define in clear terms what the diffraction limit is. The conventional resolution formulae used by many are generally only valid in the paraxial limit. I performed a parametric numerical study, employing techniques of Fourier optics, to resolve precisely what that limit should be for nonparaxial (i.e. wide angle) focusing of scalar spherical waves. I also present some novel analytical formulae born out of Debye’s approximation which explain the trends found in the numeric study. These new functional forms remain accurate under wide angle focusing and could materially improve the performance, for example, in high intensity focused ultrasound surgery by further concentrating the power distributed within the point spread function to suppress the side lobes. I also comment of some possible connections to the focusing of electromagnetic waves. In the second part of this thesis I report on a novel fabrication process which yields optically addressable, sub-micron scale, and high aspect ratio metal-insulator-metal nanocoaxes made by atomic layer deposition of Pt and Al2O3. I discuss the observation of optical transmission via the fundamental, TEM-like mode by excitation with a radially polarized optical vortex beam. Also, Laguerre-Gauss beams are shown to overlap well with cylindrical waveguide modes in the nanocoax. My experimental results are based on interrogation with a polarimetric imager and a near-field scanning optical microscope. Various optical apparatus I built during my studies are also reviewed. Numerical simulations were used with uniaxial symmetry to explore 3D adiabatic taper geometries much larger than the wavelength. Finally, I draw some conclusions by assessing the optical performance of the fabricated nanocoaxial structures, and by giving some insights into future directions of investigation. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_108652
Date January 2019
CreatorsCalm, Yitzi M.
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Page generated in 0.0101 seconds