Return to search

Feasibility of Integrated Batch Reactive Distillation Columns for the Optimal Synthesis of Ethyl Benzoate

Yes / The synthesis of ethyl benzoate (EtBZ) via esterification of benzoic acid (BeZ) with ethanol in a reactive distillation is challenging due to complex thermodynamic behaviour of the chemical reaction and the difficulty of keeping the reactants together in the reaction zone (ethanol having the lowest boiling point can separate from the BeZ as the distillation proceeds) causing a significant decrease in the conversion of BeZ in a conventional reactive distillation column (batch or continuous). This might be the reason of not reporting the use of reactive distillation for EtBZ synthesis although the study of BeZ esterification reaction is available in the public literature. Our recently developed Integrated Conventional Batch Distillation (i-CBD) column offers the prospect of revisiting such reactions for the synthesis of EtBZ, which is the focus of this work. Clearly, i-CBD column outperforms the Conventional Batch Distillation (CBD) column in terms of product amount, purity and conversion of BeZ and eliminates the requirement of excess use of ethanol. For example, compared with CBD column, the i-CBD operation can yield EtBZ at a much higher purity (0.925 compared to 0.730) and can convert more benzoic acid (93.57% as opposed to only 74.38%).

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/13170
Date27 August 2017
CreatorsAqar, D.Y., Rahmanian, Nejat, Mujtaba, Iqbal M.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted Manuscript
Rights© 2017 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the Creative Commons CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0018 seconds