Return to search

Optical control of nanoparticle catalysis influenced by photoswitch positioning in hybrid peptide capping ligands

Yes / Here we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle
catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface.
Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated
into one of two well-studied peptide sequences with known affinity for Au, each at one of three different
positions: The N- or C-terminus, or mid-sequence. Changes in the photoswitch isomerization state induce a reversible
structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This
control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the
reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the
biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends
associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene
at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations,
respectively; however, positioning the photoswitch at the C-terminus gives rise to a unique system that is
reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental
basis for new directions in nanoparticle catalyst development to control activity in real time, which could
have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally,
such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including
biosensing, photonics, and energy technologies that are highly dependent on particle surface structures. / Air Office of Scientific Research, grant number FA9550-12- 1-0226.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/16580
Date06 September 2018
CreatorsLawrence, R.L., Hughes, Zak E., Cendan, V.J., Liu, Y., Lim, C.K., Prasad, P.N., Swihart, M.T., Walsh, T.R., Knecht, M.R.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted Manuscript
Rights© 2018 ACS. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.8b10582

Page generated in 0.0022 seconds