Return to search

Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE)

Yes / The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded ‘technical grade’ mixture of CC3 and [3+5] species rendered the material porous. / Engineering and Physical Sciences Research Council (EPSRC) under the Grants EP/R005710/1 (AIC) and EP/R005540/1 (SLJ), and for an EPSRC Summer Vacation Bursary at the University of Liverpool (FG, RLG). We also thank the European Research Council under FP7, RobOT, ERC Grant Agreement No. 321156 (AIC), for financial support. RLG thanks the Royal Society for a University Research Fellowship.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/17844
Date25 May 2020
CreatorsEgleston, B.D., Brand, M.C., Greenwell, F., Briggs, M.E., James, S.L., Cooper, A.I., Crawford, Deborah E., Greenaway, R.L.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Published version
Rights© The Royal Society of Chemistry 2020. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence (https://creativecommons.org/licenses/by-nc/3.0/).

Page generated in 0.003 seconds