• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous Zeolite Crystallization in Micro-Batch Segmented Flow

Vicens, Jim 25 April 2018 (has links)
Zeolites are porous aluminosilicates that occur both naturally and synthetically, having numerous applications in catalysis, adsorption and separations. Despite over a half century of characterization and synthetic optimization of hundreds of frameworks, the exact mechanism of synthesis remains highly contested, with crystallization typically occurring under transport-limited regimes. In this work, a microcrystallization reactor working under segmented oscillatory flow has been designed to produce a semi-continuous flow of zeolite A. The fast injection of the reactants in a mixing section forms droplets of aqueous precursors in a stream of paraffin, dispersing microdroplets and avoiding any clog from occurring in the system. The crystallization occurred in the system at atmospheric pressure and isothermal conditions (65ºC). This allowed for a rather slow crystallization kinetics which was important to study and highlight the different crystallization mechanisms between flow and batch synthesis. The morphology, size distributions, crystallinity, and porosity were examined by ex-situ characterization of the samples by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and N2 Physisorption to support the conclusions drawn. The size distribution of the particles achieved in the flow reactor was conclusively narrower than the distribution achieved in the batch reactor. The average size of the crystals for both synthesis methods is reported as 400 nm and the crystallinity achieved was comparable between the two. However, the morphology was quite different between the two systems, the flow products having a much higher mesoporosity due to the presence of crystal aggregates at high crystallinity when compared to the batch crystals. Finally, extended crystallization times leads to a decline of the crystallinity of the product, which might be explained by the metastable state of zeolites in solution.
2

Continuous Zeolite Crystallization in Micro-Batch Segmented Flow

Vicens, Jim 25 April 2018 (has links)
Zeolites are porous aluminosilicates that occur both naturally and synthetically, having numerous applications in catalysis, adsorption and separations. Despite over a half century of characterization and synthetic optimization of hundreds of frameworks, the exact mechanism of synthesis remains highly contested, with crystallization typically occurring under transport-limited regimes. In this work, a microcrystallization reactor working under segmented oscillatory flow has been designed to produce a semi-continuous flow of zeolite A. The fast injection of the reactants in a mixing section forms droplets of aqueous precursors in a stream of paraffin, dispersing microdroplets and avoiding any clog from occurring in the system. The crystallization occurred in the system at atmospheric pressure and isothermal conditions (65ºC). This allowed for a rather slow crystallization kinetics which was important to study and highlight the different crystallization mechanisms between flow and batch synthesis. The morphology, size distributions, crystallinity, and porosity were examined by ex-situ characterization of the samples by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and N2 Physisorption to support the conclusions drawn. The size distribution of the particles achieved in the flow reactor was conclusively narrower than the distribution achieved in the batch reactor. The average size of the crystals for both synthesis methods is reported as 400 nm and the crystallinity achieved was comparable between the two. However, the morphology was quite different between the two systems, the flow products having a much higher mesoporosity due to the presence of crystal aggregates at high crystallinity when compared to the batch crystals. Finally, extended crystallization times leads to a decline of the crystallinity of the product, which might be explained by the metastable state of zeolites in solution.
3

Intensification des procédés de synthèse des produits de contraste et application à leur fabrication industrielle en continu / Process intensification of contrast media synthesis and application to continuous industrial production

Dobrosavljevic, Ivana 01 July 2016 (has links)
Dans un contexte de croissance des diagnostics préventifs, la demande en produits de contraste augmente, tandis que leur prix de revient industriel doit être revu à la baisse pour des raisons de compétitivité. La voie de synthèse d’un produit de contraste à rayons X, molécule iodée aux branchements hydrophiles, comporte plusieurs réactions : certaines sont limitées par le transfert de matière (milieu réactionnel polyphasique) ou par le transfert de chaleur (réaction exothermique) tandis que d’autres sont limitées cinétiquement. Les performances des équipements continus intensifiés permettent de favoriser les phénomènes de transfert de matière et de chaleur, tout en garantissant une bonne sélectivité et reproductibilité. La chaine de synthèse globale est repensée en vue d’un passage en mode continu intensifié et les réactions à étudier en intensification locale sont classées par ordre de priorité selon leur potentiel d’intensification. A partir d’une approche combinée alliant résultats expérimentaux et simulation, des modèles réactionnels peuvent être construits pour orienter les essais, afin de converger rapidement vers des conditions opératoires menant aux performances souhaitées. La nouvelle voie de synthèse proposée mettra ainsi en jeu une alternance entre étapes continues et discontinues, ce qui induit des difficultés en termes de gestion de procédé. Une voie de synthèse entièrement soluble permettrait de contourner les limitations d’intensification dues à la présence de solides et d’envisager la chaine de synthèse globale en continu / Preventing diagnostics are increasing and so is the demand for contrast media while its industrial cost needs to be decreased for competitiveness reasons. The synthesis route for a contrast media used in X-ray medical imaging, an iodinated molecule with hydrophilic functional groups, is made of several reactions: some of them are limited by heat transfer (exothermic reactions) or/and mass transfer (multiple-phase media) while others are kinetically limited. The use of continuous intensified equipment leads to enhanced heat and mass transfer performances while keeping good selectivity and reproducibility. The synthesis route is globally modified in the first place in order to shift from batch to continuous intensified and the reactions are classified for local intensification studies. A combined approach based on experimental measurements and simulation enables the building of reaction models which can be used as a guideline for the experiments towards finding the operating conditions that lead to the desired performances at laboratory scale. The new synthesis route production is based on an alternation between continuous and discontinuous steps, which leads to difficult production management. New prospects are created with a new hydrophilic synthesis route, where the limitations for shifting from batch to continuous due to the presence of solids are solved and the whole synthesis route can be transferred from batch to continuous mode
4

Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE)

Egleston, B.D., Brand, M.C., Greenwell, F., Briggs, M.E., James, S.L., Cooper, A.I., Crawford, Deborah E., Greenaway, R.L. 25 May 2020 (has links)
Yes / The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded ‘technical grade’ mixture of CC3 and [3+5] species rendered the material porous. / Engineering and Physical Sciences Research Council (EPSRC) under the Grants EP/R005710/1 (AIC) and EP/R005540/1 (SLJ), and for an EPSRC Summer Vacation Bursary at the University of Liverpool (FG, RLG). We also thank the European Research Council under FP7, RobOT, ERC Grant Agreement No. 321156 (AIC), for financial support. RLG thanks the Royal Society for a University Research Fellowship.
5

Length-controlled Gas-liquid Segment Flow in Microchannel and Application to NanoFe₃O₄ Synthesis / 長さ制御されたマイクロ流路内気液セグメント流とナノFe₃O₄合成への応用

Jiang, Xiaoyang 23 January 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25017号 / 工博第5194号 / 新制||工||1991(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 外輪 健一郎, 教授 松坂 修二, 教授 佐野 紀彰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
6

Continuous synthesis of metal-organic frameworks under high pressure

Li, Yong J. (Yong Jun) 05 March 2012 (has links)
Metal Organic Framework (MOF) materials, consisting of metal ions with organic linkers, have a functional cavity structure which can be utilized in applications such as catalyst, micro sensing, and gas absorption. Due to MOF materials' selective gas adsorption property, interest in MOF materials has intensified in the last few years, particularly for CO, CO₂, N₂, CH₄, and H₂. MOF materials are typically synthesized by reaction under hydrothermal conditions which yields a highly crystalline product. However, reaction under solvothermal condition typically requires long reaction times - from 8 hours up to several days depending upon the particular MOF material and the reaction conditions, such as solvent, temperature, and concentration. Other synthesis methods that have been developed to address these issues include microwave synthesis, sonochemical synthesis, and mechanochemical synthesis. Reaction time can be reduced to minutes under the high energy conditions of a microwave synthesis method. A solvent free synthesis can be achieved using the mechanochemical synthesis. The sonochemical synthesis method provides an environmentally friendly process. However, all of these synthesis methods above are batch processes and meet several difficulties in scalability and controllability. Herein, we introduce a new synthesis method for MOF materials which utilizes a continuous flow reactor process. To reduce the reaction time and solvent usage, and to maintain a high degree of the crystallinity are the goals of this study. Cu-BTC (BTC = Benzene, -1,3,5-Tricarboxylate ) or HKUST-1 Metal Organic Framework material was chosen to demonstrate the continuous flow reactor process since it has a simple MOF structure, consisting of Cu⁺² ions and BTC linkers, and has been widely studied for catalyst applications. The continuous flow synthesis method shows successful results of reduced residence time as low as 5 minutes, high crystal quality obtained, size control, and high yield with recycle solvent cooperation. The particle size control of MOF material has been shown crucial contributions in absorption application and is accomplished by adjusting the system temperature, flow rate, and solvent composition ratio. A water/ethanol mixture as the solvent in Cu-BTC synthesis reaction is environmentally friendly and easy to separate from the MOF product. In addition, the composition of water in solvent is the most influential factor to the crystal growth rate specifically in crystallization rate and nucleation rate. BTC is used in excess to achieve a production yield of about 97% based on Cu ion consumption. Since the Cu-BTC particles have a low solubility in the ethanol/water solution, they can be obtained easily using a dispersion/sonication method. The BTC rich supernatant can be recycled for use in the feed stream to maintain a high production rate, which can be beneficial for quick economic production in laboratory, as well as, commercial scale applications. / Graduation date: 2012
7

Obten??o e caracteriza??o de di?xido de estanho nanoestruturado pelo m?todo de s?ntese cont?nua por combust?o em solu??o

Araujo, Micheline dos Reis 07 February 2012 (has links)
Made available in DSpace on 2014-12-17T14:07:02Z (GMT). No. of bitstreams: 1 MichelineRA_DISSERT.pdf: 3734590 bytes, checksum: b9c518dbcf57b2b63cf9d386db2a5df1 (MD5) Previous issue date: 2012-02-07 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas / A S?ntese Cont?nua por Combust?o em Solu??o (SCCS) foi empregada na obten??o de p?s de di?xido de estanho nanoestruturados. Basicamente, uma solu??o precursora ? preparada, sendo posteriormente atomizada e aspergida na chama, onde ocorre a combust?o, levando ? forma??o das part?culas. A t?cnica apresenta um grande potencial na produ??o de nanopart?culas, principalmente pelo baixo custo de insumos e equipamentos. O di?xido de estanho (SnO2) nanoestruturado tem sido amplamente utilizado em diversas aplica??es, principalmente como sensores de g?s e varistores. No caso dos sensores ? base de cer?micas semicondutoras, em que as rea??es de superf?cies s?o respons?veis pela detec??o dos gases, a import?ncia da ?rea superficial e do tamanho de part?culas ? ainda maior. A prefer?ncia por um material nanoestruturado deve-se ao fato de que essas entidades apresentam alguns pontos fundamentais tais como, o aumento significativo da ?rea superficial comparados aos p?s microcristalinos convencionais e o reduzido tamanho de part?cula, que pode beneficiar certas propriedades como alta condutividade el?trica, alta estabilidade t?rmica, mec?nica e qu?mica. Neste trabalho, foram empregados como solu??o precursora cloreto de estanho dihidratado dilu?dos em ?lcool et?lico anidro. Foi utilizada a raz?o molar cloreto/solvente de 0,75 no intuito de investigar sua influ?ncia na microestrutura do material obtido. O fluxo da solu??o precursora foi de 3 mL/min. A an?lise por difra??o de raios X da solu??o precursora com raz?o molar cloreto/solvente de 0,75 indicou a obten??o de um p? cristalino e monof?sico e todos os picos s?o atribu?dos a fase SnO2. Par?metros de s?ntese como dist?ncia da chama com o atomizador, dist?ncia do sistema de capta??o com a chama piloto, raz?o molar e fluxo da solu??o precursora n?o afetaram a fase di?xido de estanho no material obtido. Na caracteriza??o do p? obtido, foram utilizadas t?cnicas como an?lises termogravim?tricas (ATG) e termodiferenciais (ATD), granulometria por difra??o de laser (GDL), an?lise cristalogr?fica por difra??o de raios X (DRX), morfologia por microscopia eletr?nica de varredura (MEV), microscopia eletr?nica de transmiss?o (MET), medida de ?rea superficial espec?fica (BET) e ensaio de condutividade el?trica. O conjunto de t?cnicas revelaram que o SnO2 apresenta comportamento de um material semicondutor, sendo um material potencialmente promissor ? aplica??o como varistor e em sistemas de sensores ? gases
8

Nanoparticules de magnétite fonctionnalisées pour l'imagerie bimodale IRM/TEP / Functionnalized magnetite nanoparticles for bimodal imaging MRI/PET

Thomas, Guillaume 27 October 2015 (has links)
Nanoparticules de magnétite fonctionnalisées pour l’imagerie bimodale IRM/TEPLes nanoparticules d’oxydes de fer superparamagnétiques (SPIONs en anglais) font l’objet de recherches intenses dans le domaine biomédical, notamment comme nanomédicament et agent de contraste T2 en imagerie par résonance magnétique (IRM). Au cours de cette étude, des nanoparticules de magnétite (Fe3O4) à destination de l’imagerie IRM/TEP (Tomographie par Emission de Positons) ont été développées. Dans un premier temps, des SPIONs modifiées en surface, stables et superparamagnétiques ont été synthétisées via un dispositif hydrothermal en continu. A leur surface ont été greffées, durant la synthèse, des molécules hydrophiles : l’acide citrique, la LDOPA, le DHCA et le PHA. La fonctionnalisation des nanoparticules a été optimisée en modifiant des paramètres de synthèse tels que la température et le lieu de mélange, occasionnant des modifications de morphologie, taille et phase. Dans un second temps, pour améliorer leur stabilité et furtivité, des polymères de type PolyEthylène Glycol (PEG) ont été greffés à leur surface, deux longueurs de chaîne ont été évaluées. Pour une application en TEP, des macrocycles, complexant le radionucléide 64Cu, tels que le MANOTA, le NODAGA et le DOTA ont été couplés à ces SPIONs. Les essais de radiomarquage sont concluants. Ces nanohybrides, pleinement caractérisés (MET, XPS, IR, DLS, potentiels zêta, ATG, Raman) sont très prometteurs pour le diagnostic via l’imagerie bimodale IRM/TEM, notamment le composé Fe3O4-LDOPA-NODAGA (øDLS = 85±1 nm, r2 = 197±7 mM.s-1, 87% 64Cu). Des études préliminaires de cytotoxicité et génotoxicité de SPIONs modifiés par de l'APTES ont également été réalisées via des biotests très sensibles et novateurs. / Functionalized magnetite nanoparticles for bimodal MRI/PET imagingSuperParamagnetic Iron Oxide Nanoparticles (SPIONs) have been widely studied in the biomedical field due to their promising application as nanodrugs and MRI (Magnetic Resonance Imaging) contrast agents (T2). In this study, magnetite (Fe3O4) nanoparticles have been developed for use as contrast agents for MRI/PET (Positron emission tomography) double imaging. First, functionalized stable superparamagnetic SPIONs have been synthesized in a continuous hydrothermal reactor. During the synthesis, hydrophilic agents (citric acid, LDOPA, DHCA and PHA) have been grafted on the surface of the nanoparticles. The functionalization of the nanoparticles has been optimized by modifying various synthesis parameters such as the temperature and the addition sequence of the organic molecules. The morphology, the size and the structure of the nanoparticles have been shown to depend on these different parameters. Then PolyEthylene Glycol (PEG) polymers have been grafted on their surface to make them stealth and biocompatible. Two different lengths have been considered. For PET imagery, macrocycles which are chelating agents of the 64Cu radionuclide such as MANOTA, NODAGA and DOTA have been grafted on these SPIONs. The radiochemical purities are very conclusive. These nanohybrids have been extensively characterized (TEM, XPS, IR, DLS, ?-potential, TGA, Raman) and are very promising as a diagnostic tool for bimodal imaging MRI/PET in particular the Fe3O4-LDOPA-NODAGA nanoplatform (øDLS = 85±1 nm, r2 = 197±7 mM.s-1, 87% 64Cu). Preliminary cytotoxicity and genotoxicity studies on SPIONs modified by APTES have also been performed via very sensitive and innovative biotests.

Page generated in 0.1355 seconds