Return to search

Active Distribution Networks Planning Considering Multi-DG Configurations and Contingency Analysis

Yes / This paper proposes a novel method for planning active distribution networks (ADNs) with the integration of an active network management (ANM) scheme using coordinated voltage control (CVC) through on-load tap changer (OLTC) transformers. The method was formulated as a security-constrained optimal power flow (SCOPF) problem to minimize total operational costs, which maximizes the utilization of renewable distributed generators (DGs) over a planning horizon. The ANM scheme was applied using OLTC to ensure safe operation and reduce voltage violations in the network. To analyse the impact of ANM, the planning problem was examined both with and without the ANM scheme. Moreover, SCOPF, considering the N-1 line contingency analysis and multi-DG configuration, was implemented to analyse the feasibility of the proposed method and the advantages of ANM under contingency situations. The method was validated on a weakly-meshed 16-bus UK generic distribution system (UKGDS). The results showed that ANM can lower operational costs and maintain network voltage for operation in feasible conditions even in the case of a contingency. Moreover, the ANM scheme mitigated the voltage rise effect caused by DGs and maximized their utilization.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18630
Date13 October 2021
CreatorsAmjad, Bilal, Al-Ja'afreh, Mohammad A.A., Mokryani, Geev
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Published version
Rights(c) 2021 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)

Page generated in 0.2021 seconds