Return to search

Regulation of tyrosinase by tetrahydropteridines and H2O2.

No / Recently two alternative mechanisms have been put forward for the inhibition of tyrosinase by 6R-l-erythro 5,6,7,8-tetrahydrobiopterin (6BH4). Initially allosteric uncompetitive inhibition was demonstrated due to 1:1 binding of 10¿6 M 6BH4 to a specific domain 28 amino acids away from the CuA active site of the enzyme. Alternatively it was then shown that 10¿3 M 6BH4 inhibit the reaction by the reduction of the product dopaquinone back to l-dopa. In the study presented herein we have used two structural analogues of 6BH4 (i.e., 6,7-(R,S)-dimethyl tetrahydrobiopterin and 6-(R,S)-tetrahydromonapterin) confirming classical uncompetitive inhibition due to specific binding of the pyrimidine ring of the pterin moiety to the regulatory domain on tyrosinase. Under these conditions there was no reduction of l-dopaquinone back to l-dopa by both cofactor analogues. Inhibition of tyrosinase by 6BH4 occurs in the concentration range of 10¿6 M after preactivation with l-tyrosine and this mechanism uncouples the enzyme reaction producing H2O2 from O2. Moreover, a direct oxidation of 6BH4 to 7,8-dihydrobiopterin by tyrosinase in the absence of the substrate l-tyrosine was demonstrated. The enzyme was activated by low concentrations of H2O2 (<0.3 × 10¿3 M), but deactivated at concentrations in the range 0.5¿5.0 × 10¿3 M. In summary, our results confirm a major role for 6BH4 in the regulation of human pigmentation.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/3531
Date January 2004
CreatorsWood, John M., Chavan, Bhavan, Hafeez, Idris, Schallreuter, Karin U.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, No full-text available in the repository

Page generated in 0.0026 seconds