Pour étudier la démonstration nous adaptons le cadre théorique de Toulmin, sur les arguments de plausibilité et de nécessité, à la théorie anthropologique du didactique de Chevallard. Les validations de l'enseignement des mathématiques sont la double transposition des démonstrations de l'institution mathématique (qui produit le savoir) et des validations, argumentations ou preuves, d'autres institutions (comme la « vie quotidienne »). L'étude diachronique des programmes du collège-lycée en France, et du Gymnasium en Bade-Würtemberg, confirmée par l'étude de manuels, montre que la démonstration est devenue explicitement un objet à enseigner, contrairement aux cas des Hauptschule et Realschule. Ces programmes recommandent l'usage de différents types de validation (argumentation, preuve) et d'arguments (pragmatiques, sémantiques, syntaxiques) suivant leurs fonctions et les moments ; on retrouve dans des leçons sur la démonstration l'influence des fonctions de la validation dans les différents genres de tâche (découvrir, contrôler, changer de registres, ...). Malgré les difficultés linguistiques, institutionnelles et culturelles liées à la comparaison, l'examen des validations de théorèmes de cours dans les manuels et de démonstrations produites par des élèves montre des similitudes quant à la cohabitation des différents types d'arguments et différentes fonctions de la validation. On observe des différences sur les types de technologie ou de technique mis en œuvre et sur le poids donné aux types d'arguments et aux registres utilisés, avec une explication liée aux conditions institutionnelles (moment considéré, contrat, fonction privilégiée, organisation de l'enseignement ...)
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00009716 |
Date | 27 May 2005 |
Creators | Cabassut, Richard |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0181 seconds