Return to search

Agrégation, percolation et séparation de phase d'une assembée de sphères dures browniennes adhésives. Approche par Simulation hors réseau.

Les fluides et systèmes complexes constituent une classe de "matériaux" au sens large dont l'originalité des propriétés statiques et dynamiques résulte à la fois de la structure chimique des particules élémentaires qui les constituent et de leur organisation dans l'espace en particulier aux échelles mésoscopiques. Ces systèmes sont souvent le lieu de phénomènes d'agrégation, de gélification et/ou de séparation de phase dus aux interactions entre les entités constituantes. Les structures complexes ainsi formées peuvent s'étendre sur des échelles allant du nanomètre au macroscopique et sont parfois transitoires ou réversibles ce qui génère l'apparition de propriétés rhéologiques remarquables.<br />Si les systèmes présentent une grande diversité au niveau des interactions responsables des structures et au niveau de leur énergie (polymères associatifs, systèmes hétérogènes nanophasés, mélanges de colloïdes et de polymères, gels chimiques et physiques, biopolymères), au-delà des spécificités propres à chaque système nous sommes particulièrement intéressés par la recherche de lois de comportements "universelles" résultant de l'organisation spatiale des structures.<br />L'objectif de cette thèse est de comprendre la formation de ces structures et leur façon de remplir l'espace par modélisation des processus à l'aide de la simulation numérique. Le modèle numérique est base sur un système de sphères dures hors réseau qui modélise par exemple un ensemble de micelles sphériques en interaction (attraction, répulsion).<br />La première étape consiste à distribuer les sphères dures dans une boite cubique puis à les animer d'un mouvement brownien afin d'aboutir à un système parfaitement bien équilibré. L'introduction de paramètres décrivant la portée et l'intensité des forces attractives entre les sphères permet une étude "statique" de la transition sol-gel.<br />Les phénomènes d'agrégation irréversible limitée par la diffusion (DLCA) conduisent à des structures fractales qui sont modélisées par l'intermédiaire d'une probabilité de collage entre amas égale à 1 (deux amas qui se rencontrent se collent toujours de façon irréversible). Les résultats obtenus, temps de gel, dimension fractale sont analysés et comparés avec d'autres modèles, notamment sur réseau. La modélisation hors réseau permet une étude à toutes les échelles spatiales (y compris locales).<br />Une autre partie de ce travail a porté sur l'étude des phénomènes d'agrégation réversible. La ligne de percolation de notre modèle est comparée à celle obtenue dans l'approximation de Percus-Yevick avec les relations de fermeture de Ornstein-Zernike. La séparation de phase est clairement observée dans une certaine gamme d'interaction (distance et force) et comparée par l'intermédiaire du paramètre d'adhésivité (tau^-1) aux résultats expérimentaux et théoriques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00380854
Date11 January 2005
CreatorsRottereau, Manuel
PublisherUniversité du Maine
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds