Return to search

Mesure de la dose physique par lms radiochromiques et simulation Monte Carlo pour l'hadronthérapie

En raison des forts gradients de dose générés par les interactions des particules avec la matière, les traitements par hadronthérapie nécessitent un contrôle très précis de la dose délivrée au patient. Les codes Monte Carlo représentent des outils indispensables dans la validation des systèmes de planification de traitement utilisé en clinique. Nous nous intéressons dans cette thèse au calcul de la dose physique à l'aide des simulations Monte Carlo Geant4/Gate. Nous étudions l'ajustement de plusieurs paramètres qui peuvent influencer la précision du calcul de dose requise en clinique (2%, 2mm) pour un faisceau d'ions carbone de 300 MeV/u dans l'eau. Ces paramètres sont : le seuil de production des particules secondaires et la taille maximale d'un segment de la trace de particule. Les critères de tolérance sur la valeur et la localisation de la dose sont fixés de manière à avoir le meilleur compromis en termes de distribution spatiale et de temps de calcul. Nous proposons ici des paramètres permettant d'atteindre ces critères de précision. Dans la deuxième partie du travail, nous étudions la réponse des films radiochromiques MDv2-55 pour le contrôle qualité des faisceaux d'ions carbone et protons. Nous avons en particulier observé et étudié l'effet de saturation de ces films dosimétriques pour les irradiations à TEL élevés (≥ 20 KeV/µm) dans des milieux homogènes et hétérogènes. Cet effet est dû à la forte densité d'ionisation autour de la trace de particule. Nous avons proposé et développé un modèle appelé " RADIS RAdiochromic films Dosimetry for Ions using Simulations " qui permet de prédire la réponse de ces films avec la prise en compte de cet effet de saturation. Ce modèle est basé sur la réponse des films en photons et la saturation des films à des dépôts d'énergies linéïques élevés calculée par Monte Carlo. Plusieurs types de faisceaux ont été étudiés : ions carbone, protons et photons à différentes énergies. Ces expérimentations ont été menées au Grand Accélérateur National d'Ions Lourds (GANIL), au Centre de protonthérapie d'Orsay (CPO), au Centre A. Lacassagne (CAL) et au Centre Léon Bérard (CLB). A l'aide du modèle, nous pouvons ainsi reproduire la densité optique des films le long du profil de Bragg pour tous les faisceaux avec une précision meilleure que 2%.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00520876
Date25 June 2010
CreatorsZahra, Mohamad Nabil
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0014 seconds