Return to search

Porous calcium phosphate based nanovectors for growth factor release

Calcium phosphates are the most frequently used ceramics for bone regeneration due to their biocompatibility and favorable resorption properties. Their performance can however be improved if they are associated to growth factors. In order to control the release of growth factors, we have inted to synthesize calcium phosphates with controlled mesoporosity. This thesis represents the first work that combines mesoporous calcium phosphates with the growth factors TGF and VEGF. To obtain hydroxyapatite with controlled mesoporosity, we propose new synthesis pathways: the hydroxyapatite is synthesized inside the porosity of silica or carbon templates by infiltration of aqueous precursor solutions. The template is eliminated by chemical etching with NaOH (silica template) or by selective oxidation (carbon template). Six ceramics have been chosen for the analysis of their protein adsorption and release properties. First, the experimental protocol is defined using the model proteins BSA and Cytochrom C. Then, the growth factors TGF and VEGF have been used. By this study, we were able to determine which samples were the most efficient in terms of protein adsorption and release.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00685006
Date20 December 2010
CreatorsMöller, Janina
PublisherUniversité de Haute Alsace - Mulhouse
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0021 seconds