Return to search

Caractérisation et modélisation du comportement de la phase dispersée dans les colonnes pulsées

Dans un contexte où il est devenu vital de réduire l'impact de l'activité humaine sur l'environnement, l'optimisation du recyclage des combustibles nucléaires prend une place grandissante. L'extraction liquide-liquide, procédé au coeur du recyclage, met en contact deux phases immiscibles dont une dispersée sous forme de gouttes. L'échange de matière entre les deux liquides est étroitement lié à la surface d'échange produite par l'appareil utilisé. La colonne pulsée, exploitée à une échelle industrielle, fait l'objet de cette étude dont le but est de fournir un modèle mathématique capable de prévoir la quantité d'aire interfaciale produite afin de permettre un meilleur dimensionnement des appareils. Les travaux menés au cours de cette thèse se sont axés autour de deux thèmes principaux : la caractérisation des émulsions en colonne pulsée et la modélisation du comportement de la phase dispersée. La phase de caractérisation a eu pour objectif de mesurer les données nécessaires à la connaissance de l'émulsion et au calibrage du modèle mathématique. Pour se mettre en conformité avec la nature eulérienne du modèle, un système de synchronisation des mesures avec le cycle de pulsation de la colonne a été mis en place. Des techniques de mesure innovantes, par traitement d'images, exploitant cette synchronisation ont été développées pour permettre de mesurer le taux de rétention moyen (fraction volumique), la distribution des tailles de gouttes, l'anisotropie ainsi que l'aire interfaciale volumique moyenne. Ces travaux expérimentaux ont fait l'objet d'une communication orale à l'International Congres on Multiphase Flow (ICMF 2010). La phase de modélisation s'est appuyée sur les travaux de D. LHUILLIER qui fournit un modèle eulèrien d''emulsion de type " modèle de m'elange ". L'émulsion y est perçue comme une phase unique, pseudo continue, aux propriétés pondérées par les fractions volumiques respectives de chacune des phases présentes. La nouveauté du modèle réside sur l'emploi d'une équation de transport de l'aire interfaciale volumique, grandeur clé pour le dimensionnement et la mesure de l'efficacité des appareils d'extraction liquide liquide. L'évolution de cette grandeur est le résultat de la compétition entre quatre phénomènes principaux que sont la déformation, le retour à l'isotropie, la coalescence et la fragmentation. La restitution correcte de cette physique a nécessité l'emploi d'une méthode de " fractionnement du pas de temps " où les effets de chaque phénomène sont pris en compte de façon séquentielle pour que les termes puits comme le retour à l'isotropie ou la coalescence n'effacent pas instantanément la production générée par les termes source. Dans un premier temps l'ajustement du modèle s'est basé sur des données de la littérature mettant en jeu des géométries académiques comme le convergent-divergent. Les données expérimentales fraîchement acquises ont ensuite servi à apporter une première validation du modèle sur une géométrie moins courante, la colonne pulsée.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00825558
Date28 January 2011
CreatorsRandriamanantena, Tojonirina
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds