Stabilisation rapide et observation en plusieurs instants de systèmes oscillants

Ce travail est constitué de deux parties indépendantes traitant chacune d'un problème issu de la théorie du contrôle des équations aux dérivées partielles. La première partie est consacrée à l'étude d'un feedback explicite et déjà connu, s'appliquant à des systèmes linéaires, réversibles en temps et éventuellement munis d'un opérateur de contrôle non-borné. On justifie le caractère bien posé du problème en boucle fermée via la théorie des semi-groupes puis on étudie le taux de décroissance des solutions du système régulé. La seconde partie concerne un problème d'observation pour la corde vibrante : on détermine comment choisir des instants d'observation pour que la position de la corde à ces instants permette de retrouver les conditions initiales tout en préservant une certaine régularité. La méthode, qui repose sur des résultats d'approximation diophantienne, est ensuite étendue à d'autres systèmes. En utilisant une méthode de dualité on démontre aussi un résultat de contrôlabilité exacte.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00864407
Date27 September 2013
CreatorsVest, Ambroise
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0053 seconds