Return to search

Modelling and control of a high performance electro-hydraulic test bench

Hydraulic systems are widely applied in industry for position or force control. However, due to hydraulic system nonlinearities, it is difficult to achieve a precise model valid over a large range of frequencies and movements. The work in this dissertation focuses on a high performance hydraulic test bench which involves three main hydraulic components, i.e. two high performance servovalves, a double rod actuator, and a specific intermediate block connecting the servovalves and actuator. This rig has been designed for testing aerospace or automotive components in real conditions (e.g. wear and ageing effects). The main objectives of this dissertation are first the development of a virtual prototype based on a precise model which is derived from the physical principles and experimental works, and then second the synthesis of several nonlinear control laws of this actuation system in a large operating range with a good robustness to the perturbations. The proposed model based on Bond Graph shows a very good agreement with experimental results not only at low frequencies, but also at high frequencies. Moreover, its performances are improved at high frequencies by introducing the dynamic effects due to the intermediate block. Besides, multivariable and monovariable control strategies, based on respectively the backstepping and the model-free method, are developed and implemented on the test bench. All the control strategies proposed have been validated by simulations and experiments. Results show they lead to better tracking precision and robustness performance compared to the conventional control techniques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00876661
Date11 June 2013
CreatorsXu, Yaozhong
PublisherINSA de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0018 seconds