Return to search

Adaptation de maillages pour des schémas numériques d'ordre très élevé

L'adaptation de maillages est un processus itératif qui consiste à changer localement la taille et l'orientation du maillage en fonction du comportement de la solution physique étudiée. Les méthodes d'adaptation de maillages ont prouvé qu'elles pouvaient être extrêmement efficaces en réduisant significativement la taille des maillages pour une précision donnée et en atteignant rapidement une convergence asymptotique d'ordre 2 pour des problèmes contenant des singularités lorsqu'elles sont couplées à des méthodes numériques d'ordre élevé. Dans les techniques d'adaptation de maillages basées sur les métriques, deux approches ont été proposées: les méthodes multi-échelles basées sur un contrôle de l'erreur d'interpolation en norme Lp et les méthodes ciblées à une fonctionnelle qui contrôle l'erreur d'approximation sur une fonctionnelle d'intérêt via l'utilisation de l'état adjoint. Cependant, avec l'émergence de méthodes numériques d'ordre très élevé telles que la méthode de Galerkin discontinue, il devient nécessaire de prendre en compte l'ordre du schéma numérique dans le processus d'adaptation de maillages. Il est à noter que l'adaptation de maillages devient encore plus cruciale pour de tels schémas car ils ne convergent qu'à l'ordre 1 dans les singularités de l'écoulement. Par conséquent, le raffinement du maillage au niveau des singularités de la solution doit être d'autant plus important que l'ordre de la méthode est élevé. L'objectif de cette thèse sera d'étendre les résultats numériques et théoriques obtenus dans le cas de l'adaptation pour des solutions linéaires par morceaux à l'adaptation pour des solutions d'ordre élevé polynomiales par morceaux. Ces solutions sont représentées sur le maillage par des éléments finis de Lagrange d'ordre k ≥ 2. Cette thèse portera sur la modélisation de l'erreur d'interpolation locale, polynôme homogène de degré k ≥ 3 dans le formalisme du maillage continu. Or, les méthodes d'adaptation de maillages basées sur les métriques nécessitent que le modèle d'erreur soit une forme quadratique, laquelle fait apparaître intrinsèquement un espace métrique. Pour pouvoir exhiber un tel espace, il est nécessaire de décomposer le polynôme homogène et de l'approcher par une forme quadratique à la puissance k/2. Cette modélisation permet ainsi de révéler un champ de métriques indispensable pour communiquer avec le générateur de maillages. En deux et trois dimensions, des méthodes de décomposition de tenseurs telles que la décomposition de Sylvester nous permettront de décomposer la fonction exacte d'erreur puis d'en déduire le modèle d'erreur quadratique. Ce modèle d'erreur local est ensuite utilisé pour contrôler globalement l'erreur en norme Lp et le maillage optimal est obtenu en minimisant cette erreur. Dans cette thèse, on s'attachera à démontrer la convergence à l'ordre k de la méthode d'adaptation de maillages pour des fonctions analytiques et pour des simulations numériques utilisant des solveurs d'ordre k ≥ 3.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00923773
Date20 December 2013
CreatorsMbinky, Estelle
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0027 seconds