Return to search

Spintronique moléculaire : étude de la dynamique d'un spin nucléaire unique

Cette thèse se situe à la croisée de trois domaines : la spintronique qui s'attache à utiliser le degré de liberté du spin de l'électron afin de fabriquer de nouveaux dispositifs électroniques; l'électronique moléculaire qui cherche à profiter des progrès de la chimie moderne afin de fournir des alternatives au tout semi-conducteur de la micro-électronique; le magnétisme moléculaire qui cherche à synthétiser des aimants moléculaires aux propriétés toujours plus riches. Notre travail a consisté à produire un dispositif électronique à base d'aimant moléculaire et d'utiliser le spin de l'électron afin d'étudier les propriétés magnétiques à l'échelle d'une molécule. Des dispositifs semblables pourraient, dans l'avenir, constituer l'une des briques élémentaires de l'information quantique. Nous avons pour cela opté pour un transistor moléculaire à effet de champ, ayant pour canal un aimant moléculaire aux propriétés magnétiques bien connues : le Terbium double-decker ou TbPc2. Grâce à ce dispositif, nous avons, dans un premier temps, mis en évidence le retournement de l'aimantation d'une molécule unique par effet tunnel ou QTM (quantum tunneling of the magnetization). En effet, nous avons démontré que ce retournement entraînait une modification soudaine de la conductance de notre système. En effectuant une étude statistique sur les valeurs du champ de retournement, nous avons mis en évidence la présence de résonances que nous avons pu attribuer au phénomène de QTM. Nous avons également mesuré l'état d'un spin nucléaire unique : chaque résonance étant associée à un état de spin nucléaire. Nous avons étudié la température du spin nucléaire et montré que celle-ci pouvait être influencée par l'environnement électrostatique du système. En outre, le temps de vie d'un état de spin nucléaire a été extrait et estimé à quelques secondes, vérifiant que le système était faiblement perturbé par notre technique de mesure. Ces travaux jettent les bases de la construction du premier Qbit à base d'aimants moléculaires. Par des techniques de radiofréquence, le spin nucléaire pourrait être manipulé, la lecture se faisant ensuite par une mesure en conductance.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00945672
Date06 December 2012
CreatorsVincent, Romain
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds