Return to search

An Investigation of Rupture in Thin Fluid Films

The behavior of a fluid with a thin capillary meniscus can be modelled on a one-dimensional domain Ω = [−L, L] by the thin film equation ht = −(hnhxxx)x with boundary conditions hx(±L) = ±α (giving a fixed contact angle) and hxxx(±L) = 0 (prohibiting mass flux). It is desirable to know whether or not such a film experiences rupture; that is, whether there exists some x0, t0 (with t0 possibly ∞) such that h(x0, t0) = 0, corresponding to the appearance of a dry spot. We approach this problem using energy methods, which use the conservation or dissipation of quantities such as mass, surface area, coating energy, and other more abstract quantities to describe the behavior of the fluid. We present a brief analysis of the behavior of some of these energies, as well as a proof that, given certain assumptions, rupture cannot occur in a thin capillary meniscus for n > 4 and, in more restricted cases, for n > 7/2. We also show that rupture must occur for 0 < n < 1/2. We describe the asymptotic behavior of the regions in which rupture occurs. We also describe the numerical implementation of this problem and the advantages and drawbacks of using certain prewritten solvers in MATLAB and new implementations of θ-weighted schemes and the Newton-Raphson method. We propose uses of these numerical methods to make further progress on the problem.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1180
Date01 December 2005
CreatorsBaur, Robin
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHMC Senior Theses

Page generated in 0.0022 seconds