Return to search

Cyclotron Production and PET/MR Imaging of 52Mn

Introduction
The goal of this work is to advance the production and use of 52Mn (t½ = 5.6 d, β+: 242 keV, 29.6%) as a radioisotope for in vivo preclinical nuclear imaging. More specifically, the aims of this study were: (1) to measure the excitation function for the natCr(p,n)52Mn reaction at low energies to verify past results [1–4]; (2) to measure binding constants of Mn(II) to aid the design of a method for isolation of Mn from an irradiated Cr target via ion-exchange chromatography, building upon previously published methods [1,2,5–7]; and (3) to perform phantom imaging by positron emission tomography/magnetic resonance (PET/MR) imaging with 52Mn and non-radioactive Mn(II), since Mn has potential dual-modality benefits that are beginning to be investigated [8].

Material and Methods
Thin foils of Cr metal are not available commercially, so we fabricated these in a manner similar to that reported by Tanaka and Furukawa [9]. natCr was electroplated onto Cu discs in an industrial-scale electroplating bath, and then the Cu backing was digested by nitric acid (HNO3). The remaining thin Cr discs (~1 cm diameter) were weighed to determine their thickness (~ 75–85 μm) and arranged into stacked foil targets, along with ~25 μm thick Cu monitor foils. These targets were bombarded with ~15 MeV protons for 1–2 min at ~1–2 μA from a CS-15 cyclotron (The Cyclotron Corporation, Berkeley, CA, USA). The beamline was perpendicular to the foils, which were held in a machined 6061-T6 aluminum alloy target holder. The target holder was mounted in a solid target station with front cooling by a jet of He gas and rear cooling by circulating chilled water (T ≈ 2–5 °C). Following bombardment, these targets were disassembled and the radioisotope products in each foil were counted using a high-purity Ge (HPGe) detector. Cross-sections were calculated for the natCr(p,n)52Mn reaction.
Binding constants of Mn(II) were measured by incubating 54Mn(II) (t½ = 312 d) dichloride with anion- or cation-exchange resin (AG 1-X8 (Cl− form) or AG 50W-X8 (H+ form), respectively; both: 200–400 mesh; Bio-Rad, Hercules, CA) in hydrochloric acid (HCl) ranging from 10 mM-8 M (anion-exchange) and from 1 mM-1 M (cation-exchange) or in sulfuric acid (H2SO4) ranging from 10 mM-8 M on cation-exchange resin only. The amount of unbound 54Mn(II) was measured using a gamma counter, and binding constants (KD) were calculated for the various concentrations on both types of ion-exchange resin.
We have used the unseparated product for preliminary PET and PET/MR imaging. natCr metal was bombarded and then digested in HCl, resulting in a solution of Cr(III)Cl3 and 52Mn(II)Cl2. This solution was diluted and imaged in a glass scintillation vial using a microPET (Siemens, Munich, Germany) small animal PET scanner. The signal was corrected for abundant cascade gamma-radiation from 52Mn that could cause random false coincidence events to be detected, and then the image was reconstructed by filtered back-projection. Additionally, we have used the digested target to spike non-radioactive Mn(II)Cl2 solutions for simultaneous PET/MR phantom imaging using a Biograph mMR (Siemens) clinical scanner. The phantom consisted of a 4×4 matrix of 15 mL conical tubes containing 10 mL each of 0, 0.5, 1.0, and 2.0 mM concentrations of non-radioactive Mn(II)Cl2 with 0, 7, 14, and 27 μCi (at start of PET acquisition) of 52Mn(II)Cl2 from the digested target added. The concentrations were based on previous MR studies that measured spin-lattice relaxation time (T1) versus concentration of Mn(II), and the activities were based on calculations for predicted count rate in the scanner. The PET/MR imaging consisted of a series of two-dimensional inversion-recovery turbo spin echo (2D-IR-TSE) MR sequences (TE = 12 ms; TR = 3,000 ms) with a wide range of inversion times (TI) from 23–2,930 ms with real-component acquisition, as well as a 30 min. list-mode PET acquisition that was reconstructed as one static frame by 3-D ordered subset expectation maximization (3D-OSEM). Attenuation correction was performed based on a two-point Dixon (2PD) MR sequence. The DICOM image files were loaded, co-registered, and windowed using the Inveon Research Workplace software (Siemens).

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22281
Date January 2015
CreatorsWooten, A. L., Lewis, B. C., Laforest, R., Smith, S. V., Lapi, S. E.
ContributorsMallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
PublisherHelmholtz-Zentrum Dresden - Rossendorf
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
SourceWTTC15
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:d120-qucosa-162048, qucosa:22221

Page generated in 0.0151 seconds