Return to search

Investigations on CdZnTe-Semiconductor-Detectors for the Search of the Neutrinoless Double Beta Decay

The Cadmium-Zinc-Telluride 0-Neutrino-Double-Beta Research Apparatus (COBRA-Experiment) investigates the theoretically predicted neutrinoless double beta decay (0νββ-decay) to indirectly determine the effective Ma- jorana mass of the electron-neutrino by a measurement of the half-life of the 0νββ-decay using room-temperature semiconducting Cadmium-Zinc- Telluride-detectors (CZT). The detectors are made of elements containing several isotopes that decay via double beta decay (ββ-decay). In such a con- figuration the detector itself becomes the source of the decay and, hence, the efficiency for the detection of such events rises.
This work covers the investigations and characterizations made on the CZT detectors used in the COBRA-Experiment, currently running. Prior to in- stallation the physical properties of the detectors are analyzed and during operation the stability of the detectors is monitored. For the laboratory analysis three dedicated setups are developed that allow for detailed inves- tigations of different properties of the detectors. Beside the working point determination and the analysis of the temperature dependence of the de- tector performance, the spatial detector response to localized irradiation is analyzed and a setup to generate a library of specific pulse shapes is designed and operated. Furthermore, an investigation for a possible discrimination of α- and β-decay events based on pulse shape discrimination is performed as well as an analysis of the long term stability of underground operated CZT detectors.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31119
Date11 September 2018
CreatorsGehre, Daniel
ContributorsZuber, Kai, Gößling, Claus, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds