Return to search

Identification and inactivation of cancer driver mutations using the CRISPR-Cas9 system

Somatische Mutationen sind eine Hauptursache für die Entstehung von Krebs. Allerdings tragen nicht alle Mutationen gleichermaßen zur Tumorentstehung bei. Ein wichtiges Ziel der personalisierten Medizin ist es daher, die für das Wachstum und Überleben des Tumors wesentlichen (sogenannte „Treiber“-Mutationen) von den zahlreichen biologisch neutralen Mutationen (sogenannte „Passagier“-Mutationen) zu unterscheiden. In der vorliegenden Studie etablierte ich einen CRISPR-basierten, genetischen Screen mit dessen Hilfe die funktionelle Rolle von Mutationen bei Krebs untersucht werden kann. Ich konnte nachweißen, dass diese mutationsselektive Strategie geeignet ist, um neue Krebstreibermutationen in der Kolorektalkarzinom- Zelllinie RKO zu identifizieren. Dazu verwendete ich 100 unterschiedliche sgRNAs, welche jeweils eine Krebsmutationssequenz spezifisch schneiden während die Wildtyp-Sequenz nicht verändert wird. Als Kontrolle nutzte ich die Kolorektalkarzinom- Zelllinie HCT116, welche die Zielmutationen nicht trägt. Interessanterweise ergab die Datenanalyse, dass zwei sgRNAs, welche die gleiche Mutation (UTP14A: S99del) schneiden, besonders rasch und ausschließlich in RKO-Zellen verloren gingen. Im Einklang mit den Screening-Ergebnissen führte die individuelle Infektion der Zellen mit diesen sgRNAs zu einem selektiven Verlust in RKO-, nicht aber HCT-Zellen, wodurch UTP14A: S99del als mutmaßliche Treiber-Mutation in RKO-Zellen identifiziert werden konnte. Die weitere Validierung und Charakterisierung dieser mutmaßlichen Treiber-Mutation wird diskutiert. Insgesamt zeigt dieser Ansatz, dass ein solches CRISPR-basiertes System ein leistungsfähiges Werkzeug auch für umfangreichere Untersuchungen von Krebsmutationen darstellt. Parallel dazu setzte ich die CRISPR-Cas-Technologie ein, um bekannte und bisher nicht therapierbare Treiber-Mutationen, wie z.B. innerhalb der Ras-Onkogen-Familie, zu untersuchen. Bemerkenswert ist in diesem Zusammenhang, dass jeder dritte Krebspatient ein durch Mutationen aktiviertes KRAS exprimiert, welches damit das am häufigsten mutierte Onkogen in menschlichen Tumorzellen ist. Im Gegensatz zu anderen Molekülen des MAPK-Signalweges konnte KRAS bisher nicht mittels kleiner, inhibitorischer Moleküle inaktiviert werden. Unter diesen Voraussetzungen birgt ein genomischer, CRISPR-basierter Ansatz das Potenzial, eine dringend benötigte therapeutische Alternative zur KRAS-Inaktivierung zu liefern. Ich entwarf daher drei mutationsselektive sgRNAs abzielend auf die häufigsten KRAS-Mutationen. Obwohl diese Strategie geeignet war, um KRAS-mutierte Tumorzellen in 3 unterschiedlichen Krebszelllinien effizient und spezifisch zu entfernen, führte die langfristige Cas9-Expression zur Bildung von onkogenen, resistenten Klonen. Dieses Phänomen wird durch DNA-Doppelstrangbrüche und die nachfolgend einsetzende, endogene DNA-Reparaturmaschinerie begünstigt. Ich konnte zeigen, dass der Adenin-Basen-Editor im Gegensatz dazu nicht nur in der Lage ist, die KRAS-Mutation ohne Doppelstrangbruch zu inaktivieren, sondern diese auch zur Wildtyp-Sequenz reparieren kann. Mit Hilfe dieses Ansatzes erreichte ich insbesondere bei Vorliegen der G12D-Mutation, einen fast vollständigen Abbau der KRAS-korrigierten Zellen. Die Validierung in patienten-abgeleiteten KRAS-G12D-Organoiden bestätigte die effiziente Korrektur sowie die daraus resultierende erhöhte Sensitivität, wenn auch in einem geringeren Maße als in Zelllinien. Somit konnte in dieser Studie erstmals gezeigt werden, dass Basen-Editierung sowohl in Zelllinien als auch in Organoiden, welche aus Tumorzellen der Patienten stammen, erfolgreich eingesetzt werden kann. Darüber hinaus ist dieses System gut verträglich und induziert weder in Zelllinien noch in Organoiden bei Vorliegen des KRAS Wildtyps unerwünschte Nebeneffekte (sogenannte „Off-target-Effekte“). Langfristig kann die Anwendung von CRISPR-basierten- und Basen-Editierungs-technologien zum Ausschalten von KRAS-Mutationen nicht nur zu einem besseren Verständnis der RAS-Biologie führen, sondern zusammen mit neuen Verabreichungsformen und Technologien die Grundlage für eine dringend benötigte KRAS-Therapie bilden.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76040
Date23 September 2021
CreatorsSayed, Shady
ContributorsBuchholz, Frank, Lindemann, Dirk, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0112 seconds