Return to search

Neue effiziente Wege zur Synthese hierarchisch poröser Titanzeolithe als Epoxidierungskatalysatoren und zur Bestimmung von Zeolithacidität

Die Herausforderungen der Ressourcenknappheit und des Klimawandels erhöhen den weltweiten Bedarf an nachhaltigen Lösungen für Produktion und Konsum drastisch. Die Effizienzsteigerung industrieller Prozesse spielt eine Schlüsselrolle in der Einsparung von Energie und Ressourcen. Optimal designte, heterogene Katalysatorsysteme könnten den Energieaufwand um bis zu 50 % senken. Eine solche Energieeinsparung wird in der Realität jedoch nicht erreicht, da ihre Leistung dem Einfluss von Massen- und Wärmetransportphänomenen unterliegt. Bei Zeolithen beeinträchtigen hohe Transportwiderstände in den Mikroporen die Katalysatorleistung maßgeblich. Die von sterischen Restriktionen bestimmte Zugänglichkeit der Mikroporen beschränkt zudem ihre Anwendbarkeit auf Reaktionen mit relativ kleinen Reaktanten und Produkten. Eine bewährte Strategie zur Erhöhung der Diffusivität in Zeolithen und Erweiterung ihres Einsatzfelds stellt die Einführung größerer Transportporen (Meso-/Makroporen) dar. Aus der Ergänzung ihrer intrinsischen Mikroporosität durch eine Sekundärporosität werden hierarchisch poröse Materialien erhalten. Enormes Potenzial zur Effizienzsteigerung von Prozessen in der Kunststoff-, Agrar-, Kosmetik- und Lebensmittelindustrie sowie in der pharmazeutischen Industrie birgt der Einsatz hierarchisch poröser Titanzeolithe, die als Epoxidierungskatalysatoren wirksam sind. Ihre Synthese ist bisher jedoch zeit- und kostenintensiv und produziert große Mengen chemischen Abfalls. In vorliegender Arbeit wurde ein daher neuer, effizienter Syntheseweg erschlossen.
Die Synthesestrategie basiert auf der simultanen Durchführung zweier Modifizierungsschritte: der Hierarchisierung eines Zeolithen durch Desilizierung – d.h. der Einführung von Transportporen durch Herauslösen von Silikatspezies aus seinem Kristallgitter – und der Titanierung, d.h. dem Einbau katalytisch aktiver Titanzentren in das Gitter. Die Schwierigkeit liegt dabei in der Kombination zweier konzeptionell gegensätzlicher Prozesse: Während die Titanierung einen konstruktiven Charakter hat, handelt es sich bei der Hierarchisierung um einen destruktiven Ätzvorgang, der das Material substanziell angreift. Das Ergebnis jedes einzelnen Prozesses hängt dabei stark von den experimentellen Bedingungen ab. Die Auswahl optimaler Bedingungen für einen Syntheseschritt, der beide Einzelprozesse vereint, stellt daher ein komplexes Multiparameterproblem dar, dem in vorliegender Arbeit mit der Anwendung statistischer Versuchsmethodik (Design of Experiments) begegnet wurde.
Zu den größten Stärken der simultanen Desilizierung und Titanierung (SDT) gehören neben der Beschränkung auf nur einen Modifizierungsschritt die Möglichkeit zur Verwendung kommerziell verfügbarer Ausgangsmaterialien sowie der deutlich höhere Nutzungsgrad der ins Material eingebrachten aktiven Katalysezentren. Weitere positive Aspekte, die in dieser Arbeit demonstriert werden konnten, bilden ihre einfache Durchführbarkeit, Reproduzierbarkeit und Skalierbarkeit. Die Synthesemethode lässt sich zudem auf Zeolithe unterschiedlicher Struktur und chemischer Zusammensetzung anwenden. Ausgehend von Zeolith Beta gelang die Synthese eines hierarchischen Ti Beta mit Tetraethylammoniumhydroxid und Tetrabutylorthotitanat bei hydrothermalen Bedingungen. Weitere erfolgreiche SDT-Experimente wurden mit den Zeolithen ZSM-58 und Silikalith durchgeführt. Aus der Behandlung von Silikalith hervorgehender hierarchisch poröser TS-1 ist aufgrund seiner Anwendbarkeit für die Propenoxidsynthese besonders industrierelevant.
Die hierarchische Porosität der SDT-Produkte wurde mittels Rasterelektronenmikroskopie und Physisorptionsmessungen mit Stickstoff bzw. Argon nachgewiesen. Unter nahezu vollständiger Erhaltung von Mikroporenvolumen und Oberfläche entstanden durch die Behandlung Makroporen sowie ungeordnete intrakristalline Mesoporen mit breiter Porengrößenverteilung und flaschenhalsartiger Form. Die Kristallinität des Materials wurde dabei nur geringfügig beeinträchtigt, wie Pulverröntgendiffraktometrie-Messungen zeigten. Die Koordination der (Oberflächen-)Titanspezies wurde mittels verschiedener Spektroskopietechniken (DRUV/Vis, FTIR, XPS) untersucht. Neben dem gewünschten Einbau vierfach koordinierter Gittertitanzentren kam es auch teilweise zur Bildung von katalytisch inaktiven höher koordinierten Gitter- bzw. Extragittertitanspezies sowie Anatasverunreinigungen. Den hinreichenden Nachweis für das Vorhandensein aktiver Titanzentren lieferten Katalysetests. Als Modellreaktion diente die Flüssigphasenepoxidierung verschiedener Cycloalkene mit Wasserstoffperoxid. Der positive Effekt der Einführung größerer Transportporen auf die Katalysatorleistung konnte durch den direkten Vergleich von rein mikroporösem mit hierarchisch porösem Ti-Beta erbracht werden. Bei gleichbleibend hoher Epoxidselektivität wurde im Test mit der hierarchischen Katalysatorprobe eine fast dreimal so hohe Epoxidausbeute erreicht. Ihre hohe Aktivität lässt sich nach der Reaktion wieder nahezu vollständig regenerieren. Sie geht auf eine langsamere Verkokung zurück. Diese ist eine Folge der höheren Desorptionsrate in den Transportporen, wie aus thermischen Antwortmessungen mit n-Butan am optischen Kalorimeter InfraSORP geschlussfolgert werden konnte. Die hohe katalytische Aktivität ist außerdem auf die hervorragende Erreichbarkeit der mittels SDT eingebrachten Ti-Zentren zurückzuführen.
Die Produkteigenschaften reagieren sensibel auf Veränderungen der experimentellen SDT-Parameter und ihrer synergetischen bzw. antagonistischen Wechselwirkung untereinander. Mittels Festkörperanalytik identifizierte Parametereffekte wurden mit den Daten der Katalysetests korreliert und bildeten so eine aussagekräftige Grundlage für die wissenschaftliche Interpretation zugrundeliegender Struktur-Aktivitätsbeziehungen. Ausgehend von den gefundenen Parametereffekten wurde eine Optimierung ausgewählter SDT-Parameter in Bezug auf die mit dem Syntheseprodukt erzielte Epoxidausbeute vorgenommen. Das Produkt der optimierten Synthese erreichte im Katalysetest die höchste Ausbeute aller getesteten Katalysatorproben. Seine Turnover Frequency (TOF) übertraf die einer rein mikroporösen Vergleichsprobe um mehr als das Neunfache. Auch im Vergleich mit mikroporösen und mesoporösen Referenzproben aus der Literatur schnitt es überragend ab.
Viele Prozesse aus der Raffinerietechnik, Petrochemie und Feinchemikalienherstellung nutzen Zeolithe nicht als Epoxidierungs-, sondern als Säurekatalysatoren. Eine effiziente Methode zur Bestimmung der Zeolithacidität ist demnach von hoher Wichtigkeit für die Industrie. Zur quantitativen Analyse der Säurezentren hat sich die temperaturprogrammierte Desorption von Ammoniak (NH3-TPD) etabliert. Der größte Nachteil dieser Methode liegt in der langen Messzeit. In vorliegender Arbeit wurde die Anwendbarkeit thermischer Antwortmessungen mit Ammoniak am Gerät InfraSORP als schnelle Screeningmethode für Zeolithacidität demonstriert. Die Säurezentrenanzahl einer Probe lässt sich dabei in etwa 30 min abschätzen. Die enorme Zeitersparnis, der geringere Materialverbrauch und die Möglichkeit zur Parallelisierung der Messungen aufgrund des modularisierbaren Messprinzips machen die Methode vor allem für die industrielle Prozess- und Qualitätskontrolle interessant.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:77316
Date11 January 2022
CreatorsWerner, Anja
ContributorsKaskel, Stefan, Schwieger, Wilhelm, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0035 seconds