Return to search

Development of Quantitative Rapid Isothermal Amplification Assay for Leishmania donovani

Quantification of pathogen load, although challenging, is of paramount importance for accurate diagnosis and clinical management of a range of infectious diseases in a point-of-need testing (PONT) scenario such as in resource-limited settings. We formulated a quantification approach to test the standard-curve based absolute quantification ability of isothermal recombinase polymerase amplification (RPA) assay. As a test of principle, a 10-fold dilution series of Leishmania donovani (LD) genomic DNA prepared in nuclease-free-water (NFW), and from culture-spiked-blood (CSB) were tested, and a 15 min assay was performed. A modified algorithm was formulated to derive the detection outcome. The threshold-record times (Tr) in seconds thus obtained were plotted against the initial load of parasite genomes for log-linear regression analysis. The quantitative RPA (Q-RPA) assay was further evaluated against a LD quantitative (q)-PCR assay with DNA extracted from visceral and post-Kala-azar dermal leishmaniasis case specimens and stratified into different ranges of threshold cycle (Ct). The best-fitted regression models were found linear with mean r2/root mean square error (RMSE) values of residual points (in seconds) estimated as 0.996/8.063 and 0.992/7.46 for replicated series of NFW and CSB, respectively. In both series, the lower limit of detection reached less than 0.1 parasite genome equivalent DNA. Absolute agreement between Q-RPA and LD-qPCR was found for test positivity, and strong positive correlations were observed between the Tr and Ct values (r = 0.89; p < 0.0001) as well as between the absolute parasite loads (r = 0.87; p < 0.0001) quantified by respective assays. The findings in this very first Q-RPA assay for leishmaniasis are suggestive of its potential in monitoring LD load in clinical specimens, and the development of rapid Q-RPA assays for other infectious diseases.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:85158
Date04 May 2023
CreatorsKhan, Md Anik Ashfaq, Faisal, Khaledul, Chowdhury, Rajashree, Ghosh, Prakash, Hossain, Faria, Weidmann, Manfred, Mondal, Dinesh, El Wahed, Ahmed Abd
PublisherMDPI
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation2075-4418, 1963

Page generated in 0.0018 seconds