Return to search

Fe plaque assisted aquatic U rhizofiltration by Phragmites australis Trin ex Steud. –

The macrophytes have the ability accumulating multiple metals/metalloids species from the terrestrial and aquatic environments. The environmental-friendly phytoremediation technologies via these plant species have been applied for non-degradable pollutants removal. The macrophytes derived rhizofiltration is a major and efficient technology for metals/metalloids removal, especially in aquatic environments (e.g. wetland).

Comparing with the common metals/metalloids often studied, aquatic U rhizofiltration via macrophytes has been just considered recently. In this study, the field investigation in a U tailing basin wetland showed that the rhizofiltration was crucial for aquatic U retention via Phragmites australis Trin ex Steud. (water to root bioconcentration factor (BCF): 670 to 1556). The aquatic U retention efficiency in aboveground biomass of P. australis was insufficient (BCF: 0.4 to 5.3), comparing with the rhizofiltration. However, the high productivity (1.2 to 1.9 kg•m-2 per growing season) of P. australis still resulted in a notable yearly U accumulation in the areal total aboveground biomass (0.04 to 0.35 mg•m-2 per growing season). It was potentially promoted by the enhanced aquatic U rhizofiltration. The U within aboveground biomass could be released to submerse soil with the degradable or recalcitrant fallen litters. It enhanced the organic carbon supply in rhizosphere together with the root litter, and potential water to root U translocation within mobilized organic compounds. Hence the rhizofiltration stood in the crucial position of the plant-litter-water-soil U recycling in aquatic environment.

The results from field investigation and mesocosm experiment further suggested that the Fe plaque (IP) on root surface was crucial for aquatic U rhizofiltration. The IP contained most of root retained U in both environments (proportion of U within IP: 55.8 to 82.6% in field and 66.7 to 86.0% in mesocosm). However, the efficiency of IP assisted aquatic U rhizofiltration was affected by the redox state gradient (-179 to 220 mV) related redox processes. Field investigation suggested that high content of dissolved oxygen (up to 8.2 mg•l-1) was capable to rapidly oxidize soluble Fe(II) as sparingly soluble Fe(III) oxides precipitated in subhydric soil. It consequently limited the aquatic Fe availability for root uptake and precipitation as IP. However, the strong oxidation ability also relatively increased aquatic U(VI) availability incorporated with inorganics and degradable organic matters. It was adverse for controlling the aquatic U concentration (66.7 to 92.0 μg•l-1 in field). On the other hand, it also benefited the U uptake by inner root tissue and upward translocation to aboveground biomass of P. australis.

The different inorganic N species also significantly influenced IP assisted aquatic U rhizofiltration. The aquatic NH4+ sustained the reduction and acidification (via nitirification) potential for Fe(III) and U(VI) bioreduction in rhizosphere (-87 to 21 mV in NH4+ cultured mesocosm pots). It improved the root uptake (mainly within IP) of Fe and U (2992.9 to 5010.7 mg•kg-1 Fe and 45.7 to 62.8 mg•kg-1 U in NH4+ cultured root). On the contrary, the NO3- depended strong oxidation ability (23 to 224 mV in NO3- cultured mesocosm pots) inhibited the IP formation and the related aquatic U rhizofiltration efficiency (1568.5 to 2569.5 mg•kg-1 Fe and 26.2 to 49.6 mg•kg-1 U in NO3- cultured root). The aquatic U availability in rhizosphere was also increased via NO3- depended oxidation processes (aquatic U concentration in mesocosm: 1.6 to 589.3 μg•L-1 (NO3-) vs. 1.4 to 58.2 μg•L-1 (NH4+)). The sufficient nitrogen supply is also a significant driving force for high biomass productivity of P. australis. The higher biomass of P. australis increased the U accumulation capacity for root and aboveground tissues. The nitrogen related high biomass accumulation of P. australis also potentially enhanced the share of organic bound U in subhydric soil via plant litters supply.

The IP assisted aquatic U rhizofiltration was also affected by the co-existing metals/metalloids in rhizosphere. The field investigation indicated that high As availability (aquatic As/U ratio: 0.7 to 1.6) inhibited the U retention within IP through the competitive absorption, due to its high affinity to IP. The Ca improved the aquatic U(VI) availability by forming the soluble Ca-uranyl-carbonate compounds. The Ca also potentially competed with hydrated Fe(III) oxides within IP by incorporating with U and encourage the U retention within inner root tissue. The P was beneficial for U retention within IP possibly in form of U-Fe-phosphate complexes. However, it was still need to be proofed in further studies.

Despite of the biogeochemical conditions in rhizosphere, the aboveground transpiration of P. australis also affected the IP formation and related aquatic U rhizofiltration. The higher transpiration rate (TR) of P. australis (3.3±1.2 mm•d-1 in field, 4.5±2.0 mm•d-1 (NH4+)/5.0±2.2 mm•d-1(NO3-) in mesocosm) increased the aquatic nutrient/non-essential elements availability for root uptake. For this reason, the aquatic U rhizofiltration of P. australis (21.8±3.1 mg•kg-1 in field, 62.1±1.0 mg•kg-1 (NH4+)/47.6±1.8 mg•kg-1 (NO3-) in mesocosm) was enhanced under higher TR. The higher TR also promoted the formation of IP and its U retention capacity. Furthermore, the U translocation from root to above ground biomass (mainly in leaves) of P. australis was also enhanced under higher TR. It was potentially benefited by the increased transpirational pull and root uptake of other active mediator (e.g. Ca). The effect of transpiration was also coupled with the different N species on IP assisted aquatic U rhizofiltration. The higher TR depended strong root uptake and assimilation of N increased the biomass accumulation of P. australis. Furthermore, the higher TR also potentially increased the share of root in biomass partition of P. australis. Consequently, the stronger transpiration resulted in the higher aquatic U accumulation in area related root biomass (up to 84.0±3.6 mg•m-2 (NH4+) and 86.4±5.8 mg•m-2 (NO3-) U per season in mesocosm).

In conclusion, it was possible for eutrophic P. australis stands to retain the aquatic U via rhizofiltration. The IP on root surface was a crucial mediator contributing the aquatic U rhizofiltration, especially in iron rich milieu. The efficiency of IP assisted aquatic U rhizofiltration could be further improved under suitable environmental conditions. In this study, these conditions might include: i) reductive rhizosphere environment with active reducers (e.g. NH4+) encouraging Fe(II) generation for IP formation and U retention within it; ii) limited competitive elements (e.g. As and Ca) co-existed with Fe and U in rhizosphere; iii) sufficient nutrients (e.g. N) supply and related high biomass productivity of plant; iv) strong transpiration effect improved the nutrient assimilation of root and also the aquatic U/Fe availability for root uptake. By adjusting these conditions (also include other potential factors not discussed in this study), an effective rhizofiltration technology was supposed to be applied for aquatic U removal.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-231406
Date15 December 2017
CreatorsWang, Weiqing
ContributorsTechnische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. Gert Dudel, Prof. Dr. Jan Vymazal
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0028 seconds