Return to search

Total aerosol effect

Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation
formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to
define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations
(RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-186027
Date29 October 2015
CreatorsLohmann, Ulrike, Rotstayn, Leon, Storelvmo, Trude, Jones, Andrew, Menon, Surabi, Quaas, Johannes, Ekman, Annica M. L., Koch, Dorothy, Ruedy, Reto A.
ContributorsEidgenössische Technische Hochschule Zürich, Institute of Atmospheric and Climate Science, Centre for Australian Weather and Climate Research,, Met Office Hadley Centre,, Lawrence Berkeley National Laboratory,, Max-Planck-Institut für Meteorologie,, Stockholm University,, NASA GISS,, Copernicus Publications,
PublisherUniversitätsbibliothek Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article
Formatapplication/pdf
SourceAtmospheric chemistry and physics (2010) 10, S. 3535-3246

Page generated in 0.0026 seconds