Return to search

Interpolatory Projection Methods for Parameterized Model Reduction

We provide a unifying projection-based framework for structure-preserving interpolatory model reduction of parameterized linear dynamical systems, i.e., systems having a structured dependence on parameters that we wish to retain in the reduced-order model. The parameter dependence may be linear or nonlinear and is retained in the reduced-order model. Moreover, we are able to give conditions under which the gradient and Hessian of the system response with respect to the system parameters is matched in the reduced-order model. We provide a systematic approach built on established interpolatory $\mathcal{H}_2$ optimal model reduction methods that will produce parameterized reduced-order models having high fidelity throughout a parameter range of interest. For single input/single output systems with parameters in the input/output maps, we provide reduced-order models that are \emph{optimal} with respect to an $\mathcal{H}_2\otimes\mathcal{L}_2$ joint error measure. The capabilities of these approaches are illustrated by several numerical examples from technical applications.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-201000011
Date05 January 2010
CreatorsBaur, Ulrike, Beattie, Christopher, Benner, Peter, Gugercin, Serkan
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, text/plain, application/zip
RightsDokument ist für Print on Demand freigegeben
Relationdcterms:isPartOf:Chemnitz Scientific Computing Preprints ; 09-08

Page generated in 0.0022 seconds