Return to search

PFFT - An Extension of FFTW to Massively Parallel Architectures

We present a MPI based software library for computing the fast Fourier transforms on massively parallel, distributed memory architectures. Similar to established transpose FFT algorithms, we propose a parallel FFT framework that is based on a combination of local FFTs, local data permutations and global data transpositions. This framework can be generalized to arbitrary multi-dimensional data and process meshes. All performance relevant building blocks can be implemented with the help of the FFTW software library. Therefore, our library offers great flexibility and portable performance. Likewise FFTW, we are able to compute FFTs of complex data, real data and even- or odd-symmetric real data. All the transforms can be performed completely in place. Furthermore, we propose an algorithm to calculate pruned FFTs more efficiently on distributed memory architectures.
For example, we provide performance measurements of FFTs of size 512^3 and 1024^3 up to 262144 cores on a BlueGene/P architecture.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-87717
Date12 July 2012
CreatorsPippig, Michael
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, text/plain, application/zip
Relationdcterms:isPartOf:Preprintreihe der Fakultät Mathematik, Preprint 2012-06

Page generated in 0.0031 seconds