Return to search

Decadal variability of the Pacific subtropical cells and equatorial sea surface temperature

This thesis investigates possible dynamical pathways through which variability in the extra-tropical Pacific Ocean influences decadal fluctuations of tropical Pacific sea surface temperatures (SST). Specifically, we examine the hypothesis that low-frequency changes in the Pacific‟s meridional subtropical cells (STCs), which transport subsurface water masses equatorward from the extra-tropical into the tropical Pacific upwelling system, modulate decadal variations of the equatorial SST. The relationship between the STCs and equatorial Pacific SST anomalies is explored statistically using the monthly hindcast output from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). We find that decadal variability of the subsurface heat transport of the southern branch of the STC is more closely correlated (R = -0.74) with eastern equatorial SST anomalies on timescales longer than 8 years. The northern branch of the STC is overall not well correlated with equatorial SSTa; however, we find that in the period before the 1976 climate shift, the northern cell is more strongly and significantly correlated with equatorial SSTa (R = -0.89, >99%), while the southern cell is not (R = -0.32).
The physical significance of these findings remain unclear and requires isolating mechanisms that could lead to an asymmetry in the role of the northern and southern STC in modulating eastern equatorial SSTa during different states of the Pacific climate. This will be a critical step to attribute physical significance to the statistical changes observed before and after the 1976 climate shift.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/31671
Date17 November 2009
CreatorsYoung, Carina Saxton
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds