• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°–37°S) since the Early Twentieth Century

González-Reyes, Álvaro, McPhee, James, Christie, Duncan A., Le Quesne, Carlos, Szejner, Paul, Masiokas, Mariano H., Villalba, Ricardo, Muñoz, Ariel A., Crespo, Sebastián 07 1900 (has links)
In the Mediterranean Andes region '(MA; 30 degrees-37 degrees S), the main rivers are largely fed by melting snowpack and provide freshwater to around 10 million people on both sides of the Andes Mountains. Water resources in the MA are under pressure because of the extensive development of industrial agriculture and mining activities. This pressure is increasing as the region faces one of its worst recorded droughts. Previous studies have pointed to El Nioo-Southern Oscillation '(ENSO) as the main climatic force impacting the MA. However, the role of decadal and multidecadal climate variability, their spatial patterns, and the recurrence of long-term droughts remains poorly studied. In an attempt to better understand these factors, spatial and temporal patterns of hydroclimatic variability are analyzed using an extensive database of streamflow, precipitation, and snowpack covering the period between 1910 and 2011. These analyses are based on the combination of correlation, principal components, and kernel estimation techniques. Despite a general common pattern across the MA, the results presented here identify two hydroclimatic subregions, located north and south of 34 degrees S. While the interannual variability associated with ENSO is slightly stronger north of 34 degrees S, the variability associated with the Pacific decadal oscillation '(PDO) and/or the interdecadal Pacific oscillation '(IPO) index shows similar patterns in both regions. However, variations produced by the IPO forcing seem to be greater in the southern subregion since 1975. The estimations presented here on drought recurrence reveal a generalized increase in dry extremes since the 1950s. These findings suggest that the northern MA is more vulnerable to changes in hydrology and climate than the southern MA.
2

North pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems

Ceballos, Lina Isabel 20 November 2008 (has links)
Recent studies have identified the North Pacific Gyre Oscillation (NPGO) as a decadal mode of climate variability that is linked to previously unexplained fluctuations of salinity, nutrient, and chlorophyll in the Northeast Pacific. The NPGO reflects changes in strength of the central and eastern branches of the subtropical gyre and is driven by the atmosphere through the North Pacific Oscillation (NPO) -the second dominant mode of sea level pressure variability. We show that Rossby waves dynamics excited by the NPO propagate the NPGO signature from the central North Pacific into the Kuroshio-Oyashio Extension (KOE), and trigger changes in strength of the KOE with a lag of 3 years. This suggests that the NPGO index can be used to track changes in the entire northern branch of the North Pacific sub-tropical gyre. These results also provide a physical mechanism to explain coherent decadal climate variations and ecosystem changes between the North Pacific eastern and western boundaries.
3

Long-term climate variability at the Prince Edward Islands in the Southern Ocean

Shangheta, Anna Liisa Penelao Tulimevava 16 March 2022 (has links)
A warming Southern Ocean (SO), due to climate change and global warming, has many implications on the sub-Antarctic Islands in the SO. Due to the distance away from continental land these islands experience an oceanic climate, making them the perfect sentinels to climate change in this sector of the Southern Ocean. Studies have proposed that climate changes reported at the Prince Edward Islands (PEIs) correspond in time to a southward shift of the Antarctic Circumpolar Current (ACC) particularly the Subantarctic Front (SAF). While other studies have shown distinctive trends in ocean and atmospheric parameters such as sea surface temperature (SST), air temperature, sunshine, rainfall, air sea level pressure and wind speed and direction from the 1950s to the early 2000s, the aim of this study is to update those studies to a more recent time with updated time series. Among the changes recorded is an increase in SST and air temperature, which is a strong indication of the changing local and global climate. Using linear regression, this study showed that the rates of increase from 1949 to 2018 of the SST (0.022°C/year), minimum (0.0072°C/year) and maximum air temperatures (0.016°C/year) are smaller than estimated in previous studies. The increasing trend in SST and air temperature reported by previous papers has actually stopped since the 2000s, which reduces the formerly reported trend (0.028°C/year). Although the in-situ measured SST data had gaps, a good correlation with in-situ SST and large scale satellite derived Reynolds SST help to corroborate the covariation between SST, in-situ SST and air temperature giving weight to the hypothesis of a reversal of the positive temperature trends reported by others. The change in decadal variability a decrease in air pressure of 4 hPa since the late 1990s to late 2000s, which coincided with a decrease in minimum and maximum air temperatures of 1°C over the same period; decrease in westerly wind and an increase in the northerly component of the wind, which would explain the decrease of inshore sea surface temperature a while thereafter. This study further corroborates previous findings of a continued decrease in rainfall, while the sunshine has largely remained the same. The seasonal cycle of the air pressure is significantly associated with that of rainfall, showing that the bimodal high air pressure signature resulting from the Semi-annual Oscillation (SAO) is associated with a decrease in rainfall. The Southern Annual Mode (SAM) was significantly yet weakly correlated with the SST (0.24), rainfall (-0.25) and air pressure (0.16), indicating that it does have an impact at the PEIs but not as strong as previously speculated. The El Niño Southern Oscillation (ENSO) has very weak and insignificant relationships with the parameters examined except for a weak relationship with in-situ SST, sunshine and air pressure. These new insights, especially at the decadal timescale, could further our insight on how subAntarctic islands have responded to climatic changes.
4

Decadal variability of the Pacific subtropical cells and equatorial sea surface temperature

Young, Carina Saxton 17 November 2009 (has links)
This thesis investigates possible dynamical pathways through which variability in the extra-tropical Pacific Ocean influences decadal fluctuations of tropical Pacific sea surface temperatures (SST). Specifically, we examine the hypothesis that low-frequency changes in the Pacific‟s meridional subtropical cells (STCs), which transport subsurface water masses equatorward from the extra-tropical into the tropical Pacific upwelling system, modulate decadal variations of the equatorial SST. The relationship between the STCs and equatorial Pacific SST anomalies is explored statistically using the monthly hindcast output from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). We find that decadal variability of the subsurface heat transport of the southern branch of the STC is more closely correlated (R = -0.74) with eastern equatorial SST anomalies on timescales longer than 8 years. The northern branch of the STC is overall not well correlated with equatorial SSTa; however, we find that in the period before the 1976 climate shift, the northern cell is more strongly and significantly correlated with equatorial SSTa (R = -0.89, >99%), while the southern cell is not (R = -0.32). The physical significance of these findings remain unclear and requires isolating mechanisms that could lead to an asymmetry in the role of the northern and southern STC in modulating eastern equatorial SSTa during different states of the Pacific climate. This will be a critical step to attribute physical significance to the statistical changes observed before and after the 1976 climate shift.
5

Climate Variability and Trend on Interannual-to-Centennial timescales from Global Observations and Atmosphere-Ocean Model Simulations

January 2013 (has links)
abstract: The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2013
6

Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes

Lin, Yen-Heng 01 August 2018 (has links)
Global warming and climate change deeply influence weather and climate extremes, causing substantial property damage and loss every year around the world. Given the importance of heating differences between low-latitude and Arctic regions, which produce heat sources and cold sources that each influence global circulations, we investigate three extreme weather events in different regions in order to better understand the possible connections between extreme events and global circulation changes. This study begins with climate variations in the low-latitude western North Pacific. In early summer, the timing of the wet season has shifted from late May to early June since 1979. This change influences the water supply in Southeast Asia. Our analysis results indicate that the increase in global temperatures is suggested to have induced this change. During the hurricane season, deep convection in the western North Pacific has a 20-year frequency of timing variations, oscillating between July and August and influencing hurricane activity. These variations have not been previously identified and do not have any driven forcings, but a precursor deep-convection signal is found in the spring. Mid-latitude weather and climate can be influenced by tropical deep convection through the Pacific North American teleconnection. Our analysis results suggest that the wintertime Californian drought is mainly modulated by a teleconnection pattern from the tropics and natural variations in North Pacific circulation. Another key factor that influences mid-latitude circulation is Arctic temperature variations. We find an increase in the subseasonal Arctic warming event, suggesting more weather extremes in the mid-latitudes. Evidence suggests that sea-ice loss and the increase in tropical deep convection results in the increased likelihood of a subseasonal Arctic warming event.
7

Structure de la stratification dans les gyres subtropicaux et sa variabilité décennale dans l'océan Atlantique Nord / Stratification structure in subtropical gyres and its decadal variability in the North Atlantic Ocean

Feucher, Charlène 21 November 2016 (has links)
Les gyres subtropicaux sont au coeur des changements observés au cours des dernières décennies. On y observe entre la surface et la pycnocline permanente une augmentation du contenu thermique de l’océan. La pycnocline permanente délimite un important réservoir de chaleur et joue un rôle majeur en empêchant la chaleur accumulée en surface d’atteindre les profondeurs de l’océan. La pycnocline permanente est donc d’un intérêt important dans un contexte de changement climatique. Pour la première fois et grâce au réseau de données Argo, nous avons été capables de déterminer les propriétés de la pycnocline permanente. L’objectif de cette thèse est de déterminer la structure de la pycnocline permanente et d’étudier sa variabilité au cours des dernières décennies. Une méthode de détermination objective de la pycnocline permanente a été développée. Cette méthode a d’abord été appliquée à l’océan Atlantique nord avec les données Argo puis à l’océan global. Une structure complexe de la pycnocline permanente a été mise en évidence avec de fortes différences d’un gyre à l’autre. La pycnocline permanente est la plus profonde et la plus épaisse dans le gyre subtropical nord Atlantique. Cela explique que le gyre subtropical nord Atlantique soit le plus grand réservoir de chaleur au monde. Ensuite, les relations entre la variabilité du contenu de chaleur et les propriétés de la pycnocline permanente ont été étudiées en s’appuyant sur des réanalyses océaniques. Au cours des dernières décennies, un réchauffement important de l’océan a été observé et particulièrement dans l’océan Atlantique nord. Ce réchauffement est principalement dominé par un approfondissement des isopycnes. Les déplacements verticaux des isopycnes induisent des changements dans la stratification et affectent les propriétés de la pycnocline permanente (profondeur et densité potentielle). / Subtropical gyres are central to the observed climate changes throughout the last decades. It is observed between the surface and the permanent pycnocline an intense increase in the ocean heat content. The permanent pycnocline delineates thus an important heat reservoir. The permanent pycnocline has a major role in preventing heat to reach the deep ocean and it thus of a relative importance in the context of climate change. For the first time and thanks to the development of the Argo array, we have been able to characterize the observed structure of the permanent pycnocline. The objective of this PhD thesis is to investigate the structure of the permanent pycnocline and its variability over the last decades. We developed an objective method to characterize the properties of the permanent pycnocline. This method has been first applied to the North Atlantic Ocean with Argo data and then to the global ocean. A complex structure of the permanent pycnocline emerges with strong differences from one gyre to another. The permanent pycnocline is found to be the deepest and the thickest in the North Atlantic subtropical gyre. It implies that the North Atlantic subtropical gyre is the largest heat reservoir on Earth. Then, ocean reanalyses have been used to investigate the changes in the permanent pycnocline properties in the North Atlantic subtropical gyre. Over the last decades, there is a strong warming of the upper ocean, especially in the North Atlantic subtropical gyre. The warming in the ocean is dominated by the heaving of isopycnal surfaces. This heaving strongly affects the depths of isopycnals and the stratification. This in turn affects the properties of the permanent pycnocline, especially its depth and potential density.

Page generated in 0.2822 seconds